Siwei Zhang, Rui Deng, Jianwei Liu, Dan Luo, Miaomiao Hu, Shuhua Huang, Meng Jiang, Jia Du, Tong Jin, Dehai Liu, Yuchao Li, Maqsood Khan, Shufen Wang, Xiaofeng Wang
{"title":"SlBIN2 激酶对转录因子 SlBIML1 的磷酸化会延迟番茄开花","authors":"Siwei Zhang, Rui Deng, Jianwei Liu, Dan Luo, Miaomiao Hu, Shuhua Huang, Meng Jiang, Jia Du, Tong Jin, Dehai Liu, Yuchao Li, Maqsood Khan, Shufen Wang, Xiaofeng Wang","doi":"10.1093/plphys/kiae489","DOIUrl":null,"url":null,"abstract":"Brassinosteroids (BRs) are well known for their important role in the regulation of plant growth and development. Plants with deficiency in BR signaling show delayed plant development and exhibit late flowering phenotypes. However, the precise mechanisms involved in this process require investigation. In this study, we cloned homologs of BRASSINOSTEROID INSENSITIVE 2 (SlBIN2), the GSK3-like protein kinase in tomato (Solanum lycopersicum). We characterized growth-related processes and phenotypic changes in the transgenic lines and found that SlBIN2s transgenic lines have delayed development and slow growing phenotypes. SlBIN2s work redundantly to negatively regulate BR signaling in tomato. Furthermore, the transcription factor SlBIN2.1-INTERACTING MYB-LIKE 1 (SlBIML1) was identified as a downstream substrate of SlBIN2s that SlBIN2s interact with and phosphorylate to synergistically regulate tomato developmental processes. Specifically, SlBIN2s modulated protein stability of SlBIML1 by phosphorylating multiple amino acid residues, including the sites Thr266 and Thr280. This study reveals a branch of the BR signaling pathway that regulates the vegetative growth phase and delays floral transition in tomato without the feedback affecting BR signaling. This information enriches our understanding of the downstream transduction pathway of BR signaling and provides potential targets for adjusting tomato flowering time.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphorylation of the transcription factor SlBIML1 by SlBIN2 kinases delays flowering in tomato\",\"authors\":\"Siwei Zhang, Rui Deng, Jianwei Liu, Dan Luo, Miaomiao Hu, Shuhua Huang, Meng Jiang, Jia Du, Tong Jin, Dehai Liu, Yuchao Li, Maqsood Khan, Shufen Wang, Xiaofeng Wang\",\"doi\":\"10.1093/plphys/kiae489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brassinosteroids (BRs) are well known for their important role in the regulation of plant growth and development. Plants with deficiency in BR signaling show delayed plant development and exhibit late flowering phenotypes. However, the precise mechanisms involved in this process require investigation. In this study, we cloned homologs of BRASSINOSTEROID INSENSITIVE 2 (SlBIN2), the GSK3-like protein kinase in tomato (Solanum lycopersicum). We characterized growth-related processes and phenotypic changes in the transgenic lines and found that SlBIN2s transgenic lines have delayed development and slow growing phenotypes. SlBIN2s work redundantly to negatively regulate BR signaling in tomato. Furthermore, the transcription factor SlBIN2.1-INTERACTING MYB-LIKE 1 (SlBIML1) was identified as a downstream substrate of SlBIN2s that SlBIN2s interact with and phosphorylate to synergistically regulate tomato developmental processes. Specifically, SlBIN2s modulated protein stability of SlBIML1 by phosphorylating multiple amino acid residues, including the sites Thr266 and Thr280. This study reveals a branch of the BR signaling pathway that regulates the vegetative growth phase and delays floral transition in tomato without the feedback affecting BR signaling. This information enriches our understanding of the downstream transduction pathway of BR signaling and provides potential targets for adjusting tomato flowering time.\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae489\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae489","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Phosphorylation of the transcription factor SlBIML1 by SlBIN2 kinases delays flowering in tomato
Brassinosteroids (BRs) are well known for their important role in the regulation of plant growth and development. Plants with deficiency in BR signaling show delayed plant development and exhibit late flowering phenotypes. However, the precise mechanisms involved in this process require investigation. In this study, we cloned homologs of BRASSINOSTEROID INSENSITIVE 2 (SlBIN2), the GSK3-like protein kinase in tomato (Solanum lycopersicum). We characterized growth-related processes and phenotypic changes in the transgenic lines and found that SlBIN2s transgenic lines have delayed development and slow growing phenotypes. SlBIN2s work redundantly to negatively regulate BR signaling in tomato. Furthermore, the transcription factor SlBIN2.1-INTERACTING MYB-LIKE 1 (SlBIML1) was identified as a downstream substrate of SlBIN2s that SlBIN2s interact with and phosphorylate to synergistically regulate tomato developmental processes. Specifically, SlBIN2s modulated protein stability of SlBIML1 by phosphorylating multiple amino acid residues, including the sites Thr266 and Thr280. This study reveals a branch of the BR signaling pathway that regulates the vegetative growth phase and delays floral transition in tomato without the feedback affecting BR signaling. This information enriches our understanding of the downstream transduction pathway of BR signaling and provides potential targets for adjusting tomato flowering time.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.