David J. Janssen, Adrianus Damanik, Nicolas Tournier, Julie Tolu, Lenny Winkel, Sri Yudawati Cahyarini, Hendrik Vogel
{"title":"铁质水体中微量元素和营养物质的生物地球化学循环:来自深层寡营养古湖的制约因素","authors":"David J. Janssen, Adrianus Damanik, Nicolas Tournier, Julie Tolu, Lenny Winkel, Sri Yudawati Cahyarini, Hendrik Vogel","doi":"10.1002/lno.12687","DOIUrl":null,"url":null,"abstract":"Iron‐rich, ferruginous waters were the dominant geochemical regime for most of Earth's history. Modern ferruginous waters are found in stratified, sulfur‐poor lakes, and serve as crucial analogs for biogeochemical cycling throughout Earth's past. Here we present the first depth‐resolved data of physical structure, nutrients and trace elements from Lake Poso (Indonesia), a deep oligotrophic ancient lake. Lake Poso is ferruginous, with anoxia below ~ 90 m depth, placing it among the world's largest ferruginous lakes. Physical stratification is weaker than other tropical anoxic lakes, indicating sensitivity for paleoclimate reconstructions. Trace elements and nutrients are predominantly shaped by the oxic–anoxic transition. Manganese– and Fe oxyhydroxide–driven biogeochemical cycling occurs at distinct depth horizons, with Co and Ni controlled by Mn and showing shallow release in anoxic waters, while V, Cr, P, and As are controlled by Fe, with release in surface sediments and diffusive transport. Chromium is nonquantitatively removed in anoxic waters, in contrast to widespread assumptions in Cr‐based paleoreconstructions. Oxycline U and Se removal corresponds to a local N minimum, suggesting biological reduction and/or uptake. These first ferruginous water Se data also show removal in sediments, indicating sediment signals reflect multiple removal processes and informing Se‐based paleoreconstructions, while the absence of sediment U removal contrasts other anoxic basins. A comparison with other ferruginous lakes demonstrates how local influences drive deviations from expectations in other systems, and highlight common, generalizable ferruginous basin features. Therefore, these data will guide research in ferruginous settings across space and time, and improve paleoreconstructions from ferruginous sediment records.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"46 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biogeochemical cycling of trace elements and nutrients in ferruginous waters: Constraints from a deep oligotrophic ancient lake\",\"authors\":\"David J. Janssen, Adrianus Damanik, Nicolas Tournier, Julie Tolu, Lenny Winkel, Sri Yudawati Cahyarini, Hendrik Vogel\",\"doi\":\"10.1002/lno.12687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iron‐rich, ferruginous waters were the dominant geochemical regime for most of Earth's history. Modern ferruginous waters are found in stratified, sulfur‐poor lakes, and serve as crucial analogs for biogeochemical cycling throughout Earth's past. Here we present the first depth‐resolved data of physical structure, nutrients and trace elements from Lake Poso (Indonesia), a deep oligotrophic ancient lake. Lake Poso is ferruginous, with anoxia below ~ 90 m depth, placing it among the world's largest ferruginous lakes. Physical stratification is weaker than other tropical anoxic lakes, indicating sensitivity for paleoclimate reconstructions. Trace elements and nutrients are predominantly shaped by the oxic–anoxic transition. Manganese– and Fe oxyhydroxide–driven biogeochemical cycling occurs at distinct depth horizons, with Co and Ni controlled by Mn and showing shallow release in anoxic waters, while V, Cr, P, and As are controlled by Fe, with release in surface sediments and diffusive transport. Chromium is nonquantitatively removed in anoxic waters, in contrast to widespread assumptions in Cr‐based paleoreconstructions. Oxycline U and Se removal corresponds to a local N minimum, suggesting biological reduction and/or uptake. These first ferruginous water Se data also show removal in sediments, indicating sediment signals reflect multiple removal processes and informing Se‐based paleoreconstructions, while the absence of sediment U removal contrasts other anoxic basins. A comparison with other ferruginous lakes demonstrates how local influences drive deviations from expectations in other systems, and highlight common, generalizable ferruginous basin features. Therefore, these data will guide research in ferruginous settings across space and time, and improve paleoreconstructions from ferruginous sediment records.\",\"PeriodicalId\":18143,\"journal\":{\"name\":\"Limnology and Oceanography\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/lno.12687\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/lno.12687","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Biogeochemical cycling of trace elements and nutrients in ferruginous waters: Constraints from a deep oligotrophic ancient lake
Iron‐rich, ferruginous waters were the dominant geochemical regime for most of Earth's history. Modern ferruginous waters are found in stratified, sulfur‐poor lakes, and serve as crucial analogs for biogeochemical cycling throughout Earth's past. Here we present the first depth‐resolved data of physical structure, nutrients and trace elements from Lake Poso (Indonesia), a deep oligotrophic ancient lake. Lake Poso is ferruginous, with anoxia below ~ 90 m depth, placing it among the world's largest ferruginous lakes. Physical stratification is weaker than other tropical anoxic lakes, indicating sensitivity for paleoclimate reconstructions. Trace elements and nutrients are predominantly shaped by the oxic–anoxic transition. Manganese– and Fe oxyhydroxide–driven biogeochemical cycling occurs at distinct depth horizons, with Co and Ni controlled by Mn and showing shallow release in anoxic waters, while V, Cr, P, and As are controlled by Fe, with release in surface sediments and diffusive transport. Chromium is nonquantitatively removed in anoxic waters, in contrast to widespread assumptions in Cr‐based paleoreconstructions. Oxycline U and Se removal corresponds to a local N minimum, suggesting biological reduction and/or uptake. These first ferruginous water Se data also show removal in sediments, indicating sediment signals reflect multiple removal processes and informing Se‐based paleoreconstructions, while the absence of sediment U removal contrasts other anoxic basins. A comparison with other ferruginous lakes demonstrates how local influences drive deviations from expectations in other systems, and highlight common, generalizable ferruginous basin features. Therefore, these data will guide research in ferruginous settings across space and time, and improve paleoreconstructions from ferruginous sediment records.
期刊介绍:
Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.