Wenzheng Li, Jing Mu, Shanhong Ni, Wenlong Pei, Li Wan, Xin Wu, Jun Zhu, Zhan Zhang, Lei Li
{"title":"暴露于五氯苯酚会延迟结肠炎的恢复,这与肠道微生物群和嘌呤代谢的改变有关","authors":"Wenzheng Li, Jing Mu, Shanhong Ni, Wenlong Pei, Li Wan, Xin Wu, Jun Zhu, Zhan Zhang, Lei Li","doi":"10.1002/tox.24420","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Pentachlorophenol (PCP) was used widely as preservative and biocide and has been banned due to with various harmful effects, such as carcinogenicity and teratogenicity. However, the effects of PCP on colitis induced by dextrose sodium sulfate (DSS) remain largely unknown. Serum metabolomics and gut microbiota were investigated to elucidate the underlying mechanisms. Exposure to 20 μg/L PCP aggravated DSS-induced body weight loss, colon shortening, severe histological injuries, and upregulation of <i>TNFα</i>, <i>iNOS</i>, <i>IL-1β</i>, and <i>IL-6</i>. Serum metabolomics showed that both DSS and PCP could significantly disrupted tryptophan metabolism in normal mice. Interestingly, PCP exposure intensified the disturbance in purine metabolism but not tryptophan metabolism caused by DSS. Quantitative analysis of tryptophan and metabolites further confirmed that PCP exposure significantly increased the serum contents of serotonin, adenine, guanine, guanosine, inosine monophosphate (IMP), inosine, and hypoxanthine in DSS-treated mice. The overall gut microbial community was significantly modified by PCP and DSS treatment alone. <i>Rikenellaceae_RC9_Gut_group</i>, <i>Colidextribacter</i>, and <i>Desulfovibrio</i> were more abundant in colitis mice following PCP exposure. Further integrative analysis of differential bacteria and purine metabolites highlighted a significant correlation between <i>Desulfovibrio</i> and several purine metabolites, including guanine, guanosine, hypoxanthine, IMP, and inosine. Adenosine ribonucleotides de novo biosynthesis, inosine-5′-phosphate biosynthesis I, and urate biosynthesis/inosine 5′-phosphate degradation pathways were depleted in colitis mice upon PCP treatment. Taken together, PCP exposure delayed the recovery of colitis induced by DSS in association with altered gut microbiota and serum metabolites, which were enriched in tryptophan and purine metabolism.</p>\n </div>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":"40 1","pages":"101-110"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pentachlorophenol Exposure Delays the Recovery of Colitis in Association With Altered Gut Microbiota and Purine Metabolism\",\"authors\":\"Wenzheng Li, Jing Mu, Shanhong Ni, Wenlong Pei, Li Wan, Xin Wu, Jun Zhu, Zhan Zhang, Lei Li\",\"doi\":\"10.1002/tox.24420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Pentachlorophenol (PCP) was used widely as preservative and biocide and has been banned due to with various harmful effects, such as carcinogenicity and teratogenicity. However, the effects of PCP on colitis induced by dextrose sodium sulfate (DSS) remain largely unknown. Serum metabolomics and gut microbiota were investigated to elucidate the underlying mechanisms. Exposure to 20 μg/L PCP aggravated DSS-induced body weight loss, colon shortening, severe histological injuries, and upregulation of <i>TNFα</i>, <i>iNOS</i>, <i>IL-1β</i>, and <i>IL-6</i>. Serum metabolomics showed that both DSS and PCP could significantly disrupted tryptophan metabolism in normal mice. Interestingly, PCP exposure intensified the disturbance in purine metabolism but not tryptophan metabolism caused by DSS. Quantitative analysis of tryptophan and metabolites further confirmed that PCP exposure significantly increased the serum contents of serotonin, adenine, guanine, guanosine, inosine monophosphate (IMP), inosine, and hypoxanthine in DSS-treated mice. The overall gut microbial community was significantly modified by PCP and DSS treatment alone. <i>Rikenellaceae_RC9_Gut_group</i>, <i>Colidextribacter</i>, and <i>Desulfovibrio</i> were more abundant in colitis mice following PCP exposure. Further integrative analysis of differential bacteria and purine metabolites highlighted a significant correlation between <i>Desulfovibrio</i> and several purine metabolites, including guanine, guanosine, hypoxanthine, IMP, and inosine. Adenosine ribonucleotides de novo biosynthesis, inosine-5′-phosphate biosynthesis I, and urate biosynthesis/inosine 5′-phosphate degradation pathways were depleted in colitis mice upon PCP treatment. Taken together, PCP exposure delayed the recovery of colitis induced by DSS in association with altered gut microbiota and serum metabolites, which were enriched in tryptophan and purine metabolism.</p>\\n </div>\",\"PeriodicalId\":11756,\"journal\":{\"name\":\"Environmental Toxicology\",\"volume\":\"40 1\",\"pages\":\"101-110\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/tox.24420\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tox.24420","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Pentachlorophenol Exposure Delays the Recovery of Colitis in Association With Altered Gut Microbiota and Purine Metabolism
Pentachlorophenol (PCP) was used widely as preservative and biocide and has been banned due to with various harmful effects, such as carcinogenicity and teratogenicity. However, the effects of PCP on colitis induced by dextrose sodium sulfate (DSS) remain largely unknown. Serum metabolomics and gut microbiota were investigated to elucidate the underlying mechanisms. Exposure to 20 μg/L PCP aggravated DSS-induced body weight loss, colon shortening, severe histological injuries, and upregulation of TNFα, iNOS, IL-1β, and IL-6. Serum metabolomics showed that both DSS and PCP could significantly disrupted tryptophan metabolism in normal mice. Interestingly, PCP exposure intensified the disturbance in purine metabolism but not tryptophan metabolism caused by DSS. Quantitative analysis of tryptophan and metabolites further confirmed that PCP exposure significantly increased the serum contents of serotonin, adenine, guanine, guanosine, inosine monophosphate (IMP), inosine, and hypoxanthine in DSS-treated mice. The overall gut microbial community was significantly modified by PCP and DSS treatment alone. Rikenellaceae_RC9_Gut_group, Colidextribacter, and Desulfovibrio were more abundant in colitis mice following PCP exposure. Further integrative analysis of differential bacteria and purine metabolites highlighted a significant correlation between Desulfovibrio and several purine metabolites, including guanine, guanosine, hypoxanthine, IMP, and inosine. Adenosine ribonucleotides de novo biosynthesis, inosine-5′-phosphate biosynthesis I, and urate biosynthesis/inosine 5′-phosphate degradation pathways were depleted in colitis mice upon PCP treatment. Taken together, PCP exposure delayed the recovery of colitis induced by DSS in association with altered gut microbiota and serum metabolites, which were enriched in tryptophan and purine metabolism.
期刊介绍:
The journal publishes in the areas of toxicity and toxicology of environmental pollutants in air, dust, sediment, soil and water, and natural toxins in the environment.Of particular interest are:
Toxic or biologically disruptive impacts of anthropogenic chemicals such as pharmaceuticals, industrial organics, agricultural chemicals, and by-products such as chlorinated compounds from water disinfection and waste incineration;
Natural toxins and their impacts;
Biotransformation and metabolism of toxigenic compounds, food chains for toxin accumulation or biodegradation;
Assays of toxicity, endocrine disruption, mutagenicity, carcinogenicity, ecosystem impact and health hazard;
Environmental and public health risk assessment, environmental guidelines, environmental policy for toxicants.