Xi Wang, Jia Li, Renjun Guo, Xinxing Yin, Ran Luo, Dengyang Guo, Kangyu Ji, Linjie Dai, Haoming Liang, Xiangkun Jia, Jinxi Chen, Zhenrong Jia, Zhuojie Shi, Shunchang Liu, Yuduan Wang, Qilin Zhou, Tao Wang, Guangjiu Pan, Peter Müller-Buschbaum, Samuel D. Stranks, Yi Hou
{"title":"通过自组装分子调节相均匀性,提高反相包晶石太阳能电池的效率和稳定性","authors":"Xi Wang, Jia Li, Renjun Guo, Xinxing Yin, Ran Luo, Dengyang Guo, Kangyu Ji, Linjie Dai, Haoming Liang, Xiangkun Jia, Jinxi Chen, Zhenrong Jia, Zhuojie Shi, Shunchang Liu, Yuduan Wang, Qilin Zhou, Tao Wang, Guangjiu Pan, Peter Müller-Buschbaum, Samuel D. Stranks, Yi Hou","doi":"10.1038/s41566-024-01531-x","DOIUrl":null,"url":null,"abstract":"<p>Heterogeneity in transporting interfaces and perovskites poses a substantial challenge in improving the efficiency of perovskite solar cells from small to large scales, a key barrier to their commercial use. Here we find that the amorphous phases of self-assembling molecules (SAMs) can realize a more homogeneous perovskite growth. Hyperspectral analysis confirms a narrower and blueshifted photoluminescence peak distribution in perovskite/amorphous SAMs. Additionally, fluence-dependent time-resolved photoluminescence reveals a reduced trap-assisted recombination rate of 0.5 × 10<sup>6</sup> s<sup>−1</sup> in amorphous-SAM-based perovskite films. This improvement translates to p–i–n structured perovskite solar cells achieving an efficiency of 25.20% (certified at 24.35%) over a one-square-centimetre area. These cells maintain nearly 100% efficiency after 600 h of 1-sun maximum power point tracking under the ISOS-L-1 protocol, and retain 90% of their initial efficiency after 1,000 h, as evaluated by the ISOS-T-2 protocol.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"64 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells\",\"authors\":\"Xi Wang, Jia Li, Renjun Guo, Xinxing Yin, Ran Luo, Dengyang Guo, Kangyu Ji, Linjie Dai, Haoming Liang, Xiangkun Jia, Jinxi Chen, Zhenrong Jia, Zhuojie Shi, Shunchang Liu, Yuduan Wang, Qilin Zhou, Tao Wang, Guangjiu Pan, Peter Müller-Buschbaum, Samuel D. Stranks, Yi Hou\",\"doi\":\"10.1038/s41566-024-01531-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heterogeneity in transporting interfaces and perovskites poses a substantial challenge in improving the efficiency of perovskite solar cells from small to large scales, a key barrier to their commercial use. Here we find that the amorphous phases of self-assembling molecules (SAMs) can realize a more homogeneous perovskite growth. Hyperspectral analysis confirms a narrower and blueshifted photoluminescence peak distribution in perovskite/amorphous SAMs. Additionally, fluence-dependent time-resolved photoluminescence reveals a reduced trap-assisted recombination rate of 0.5 × 10<sup>6</sup> s<sup>−1</sup> in amorphous-SAM-based perovskite films. This improvement translates to p–i–n structured perovskite solar cells achieving an efficiency of 25.20% (certified at 24.35%) over a one-square-centimetre area. These cells maintain nearly 100% efficiency after 600 h of 1-sun maximum power point tracking under the ISOS-L-1 protocol, and retain 90% of their initial efficiency after 1,000 h, as evaluated by the ISOS-T-2 protocol.</p>\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41566-024-01531-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-024-01531-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells
Heterogeneity in transporting interfaces and perovskites poses a substantial challenge in improving the efficiency of perovskite solar cells from small to large scales, a key barrier to their commercial use. Here we find that the amorphous phases of self-assembling molecules (SAMs) can realize a more homogeneous perovskite growth. Hyperspectral analysis confirms a narrower and blueshifted photoluminescence peak distribution in perovskite/amorphous SAMs. Additionally, fluence-dependent time-resolved photoluminescence reveals a reduced trap-assisted recombination rate of 0.5 × 106 s−1 in amorphous-SAM-based perovskite films. This improvement translates to p–i–n structured perovskite solar cells achieving an efficiency of 25.20% (certified at 24.35%) over a one-square-centimetre area. These cells maintain nearly 100% efficiency after 600 h of 1-sun maximum power point tracking under the ISOS-L-1 protocol, and retain 90% of their initial efficiency after 1,000 h, as evaluated by the ISOS-T-2 protocol.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.