Fu Liu, Brian Osserman, Montserrat Teixidor i Bigas, Naizhen Zhang
{"title":"强最大秩猜想与曲线模空间","authors":"Fu Liu, Brian Osserman, Montserrat Teixidor i Bigas, Naizhen Zhang","doi":"10.2140/ant.2024.18.1403","DOIUrl":null,"url":null,"abstract":"<p>Building on recent work of the authors, we use degenerations to chains of elliptic curves to prove two cases of the Aprodu–Farkas strong maximal rank conjecture, in genus <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mn>2</mn></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mn>3</mn></math>. This constitutes a major step forward in Farkas’ program to prove that the moduli spaces of curves of genus <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mn>2</mn></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mn>3</mn></math> are of general type. Our techniques involve a combination of the Eisenbud–Harris theory of limit linear series, and the notion of linked linear series developed by Osserman. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"75 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The strong maximal rank conjecture and moduli spaces of curves\",\"authors\":\"Fu Liu, Brian Osserman, Montserrat Teixidor i Bigas, Naizhen Zhang\",\"doi\":\"10.2140/ant.2024.18.1403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Building on recent work of the authors, we use degenerations to chains of elliptic curves to prove two cases of the Aprodu–Farkas strong maximal rank conjecture, in genus <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mn>2</mn></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mn>3</mn></math>. This constitutes a major step forward in Farkas’ program to prove that the moduli spaces of curves of genus <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mn>2</mn></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mn>3</mn></math> are of general type. Our techniques involve a combination of the Eisenbud–Harris theory of limit linear series, and the notion of linked linear series developed by Osserman. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2024.18.1403\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.1403","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The strong maximal rank conjecture and moduli spaces of curves
Building on recent work of the authors, we use degenerations to chains of elliptic curves to prove two cases of the Aprodu–Farkas strong maximal rank conjecture, in genus and . This constitutes a major step forward in Farkas’ program to prove that the moduli spaces of curves of genus and are of general type. Our techniques involve a combination of the Eisenbud–Harris theory of limit linear series, and the notion of linked linear series developed by Osserman.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.