Mohamed Rachid Tchalala, Osama Shekhah, Youssef Belmabkhout, Hao Jiang, Khaled N. Salama and Mohamed Eddaoudi
{"title":"将 NOTT-300 (Al) MOF 薄膜用作环境条件下的二氧化氮电容式传感器†。","authors":"Mohamed Rachid Tchalala, Osama Shekhah, Youssef Belmabkhout, Hao Jiang, Khaled N. Salama and Mohamed Eddaoudi","doi":"10.1039/D4MA00701H","DOIUrl":null,"url":null,"abstract":"<p >Herein we report on the fabrication of a metal–organic framework (MOF)-based sensor using an NOTT-300 (Al) MOF thin film, deposited as a sensing layer on an interdigitated capacitive electrode (IDE), and deploy it for the detection of nitrogen dioxide (NO<small><sub>2</sub></small>) at room temperature. The fabricated MOF-based sensor was tested and it demonstrated a significant detection sensitivity for NO<small><sub>2</sub></small> with concentrations down to 250 ppb, with a lower detection limit around 4.0 ppb. The NOTT-300 (Al) MOF sensor also displayed an outstanding NO<small><sub>2</sub></small> sensing stability and a highly desirable detection selectivity towards NO<small><sub>2</sub></small><em>vs.</em> other common gases such CO<small><sub>2</sub></small> and H<small><sub>2</sub></small>O as well.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00701h?page=search","citationCount":"0","resultStr":"{\"title\":\"The deployment of an NOTT-300 (Al) MOF thin film as a NO2 capacitive sensor under ambient conditions†\",\"authors\":\"Mohamed Rachid Tchalala, Osama Shekhah, Youssef Belmabkhout, Hao Jiang, Khaled N. Salama and Mohamed Eddaoudi\",\"doi\":\"10.1039/D4MA00701H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Herein we report on the fabrication of a metal–organic framework (MOF)-based sensor using an NOTT-300 (Al) MOF thin film, deposited as a sensing layer on an interdigitated capacitive electrode (IDE), and deploy it for the detection of nitrogen dioxide (NO<small><sub>2</sub></small>) at room temperature. The fabricated MOF-based sensor was tested and it demonstrated a significant detection sensitivity for NO<small><sub>2</sub></small> with concentrations down to 250 ppb, with a lower detection limit around 4.0 ppb. The NOTT-300 (Al) MOF sensor also displayed an outstanding NO<small><sub>2</sub></small> sensing stability and a highly desirable detection selectivity towards NO<small><sub>2</sub></small><em>vs.</em> other common gases such CO<small><sub>2</sub></small> and H<small><sub>2</sub></small>O as well.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00701h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00701h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00701h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The deployment of an NOTT-300 (Al) MOF thin film as a NO2 capacitive sensor under ambient conditions†
Herein we report on the fabrication of a metal–organic framework (MOF)-based sensor using an NOTT-300 (Al) MOF thin film, deposited as a sensing layer on an interdigitated capacitive electrode (IDE), and deploy it for the detection of nitrogen dioxide (NO2) at room temperature. The fabricated MOF-based sensor was tested and it demonstrated a significant detection sensitivity for NO2 with concentrations down to 250 ppb, with a lower detection limit around 4.0 ppb. The NOTT-300 (Al) MOF sensor also displayed an outstanding NO2 sensing stability and a highly desirable detection selectivity towards NO2vs. other common gases such CO2 and H2O as well.