利用毫米波雷达图像提取自动驾驶应用中的车辆道路车道

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Weixue Liu;Yuexia Wang;Jiajia Shi;Quan Shi;Zhihuo Xu
{"title":"利用毫米波雷达图像提取自动驾驶应用中的车辆道路车道","authors":"Weixue Liu;Yuexia Wang;Jiajia Shi;Quan Shi;Zhihuo Xu","doi":"10.1109/LSENS.2024.3456120","DOIUrl":null,"url":null,"abstract":"Millimeter-wave (MMW) radar imaging technology has advanced significantly, providing high-resolution images crucial for various self-driving applications. This letter presents a novel approach for extracting road surfaces within a vehicle's lane using MMW radar imagery. First, the zonal connected area detection algorithm with sliding windows effectively detects feature points in the radar images. Second, the feature point classification algorithm, utilizing horizontal offset values, preliminarily identifies the feature points for the vehicle's lane boundary. Finally, the feature points are refined based on horizontal density, followed by boundary fitting to extract the road surface accurately. Experiments were conducted on three different scenarios and three distinct datasets to verify the effectiveness and generalization ability of the algorithm.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vehicle Road Lane Extraction Using Millimeter-Wave Radar Imagery for Self-Driving Applications\",\"authors\":\"Weixue Liu;Yuexia Wang;Jiajia Shi;Quan Shi;Zhihuo Xu\",\"doi\":\"10.1109/LSENS.2024.3456120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Millimeter-wave (MMW) radar imaging technology has advanced significantly, providing high-resolution images crucial for various self-driving applications. This letter presents a novel approach for extracting road surfaces within a vehicle's lane using MMW radar imagery. First, the zonal connected area detection algorithm with sliding windows effectively detects feature points in the radar images. Second, the feature point classification algorithm, utilizing horizontal offset values, preliminarily identifies the feature points for the vehicle's lane boundary. Finally, the feature points are refined based on horizontal density, followed by boundary fitting to extract the road surface accurately. Experiments were conducted on three different scenarios and three distinct datasets to verify the effectiveness and generalization ability of the algorithm.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 10\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669779/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10669779/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

毫米波(MMW)雷达成像技术取得了长足的进步,为各种自动驾驶应用提供了至关重要的高分辨率图像。这封信提出了一种利用毫米波雷达图像提取车道内路面的新方法。首先,使用滑动窗口的带状连通区域检测算法能有效检测雷达图像中的特征点。其次,特征点分类算法利用水平偏移值初步识别出车辆车道边界的特征点。最后,根据水平密度对特征点进行细化,然后进行边界拟合,以准确提取路面。我们在三种不同的场景和三个不同的数据集上进行了实验,以验证该算法的有效性和泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle Road Lane Extraction Using Millimeter-Wave Radar Imagery for Self-Driving Applications
Millimeter-wave (MMW) radar imaging technology has advanced significantly, providing high-resolution images crucial for various self-driving applications. This letter presents a novel approach for extracting road surfaces within a vehicle's lane using MMW radar imagery. First, the zonal connected area detection algorithm with sliding windows effectively detects feature points in the radar images. Second, the feature point classification algorithm, utilizing horizontal offset values, preliminarily identifies the feature points for the vehicle's lane boundary. Finally, the feature points are refined based on horizontal density, followed by boundary fitting to extract the road surface accurately. Experiments were conducted on three different scenarios and three distinct datasets to verify the effectiveness and generalization ability of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信