PreGLAM: 基于游戏性的分层情感预测模型

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Cale Plut;Philippe Pasquier;Jeff Ens;Renaud Bougueng
{"title":"PreGLAM: 基于游戏性的分层情感预测模型","authors":"Cale Plut;Philippe Pasquier;Jeff Ens;Renaud Bougueng","doi":"10.1109/TG.2023.3287732","DOIUrl":null,"url":null,"abstract":"In this article, we present the Predictive Gameplay-based Layered Affect Model (PreGLAM), an affective game spectator model that flexibly integrates into a game design process. PreGLAM combines elements of real-time player experience models and affective nonplayer-character models to output real-time estimated values for a spectator's valence, arousal, and tension during gameplay. Because tension is related to prospective events, PreGLAM attempts to predict future gameplay events. We implement and evaluate PreGLAM in a custom game \n<italic>Galactic Defense</i>\n, which we also describe. PreGLAM significantly outperforms a random walk time series in how accurately it matches ground-truth annotations and has comparable accuracy to state-of-the-art affect models.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"16 3","pages":"497-508"},"PeriodicalIF":1.7000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PreGLAM: A Predictive Gameplay-Based Layered Affect Model\",\"authors\":\"Cale Plut;Philippe Pasquier;Jeff Ens;Renaud Bougueng\",\"doi\":\"10.1109/TG.2023.3287732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present the Predictive Gameplay-based Layered Affect Model (PreGLAM), an affective game spectator model that flexibly integrates into a game design process. PreGLAM combines elements of real-time player experience models and affective nonplayer-character models to output real-time estimated values for a spectator's valence, arousal, and tension during gameplay. Because tension is related to prospective events, PreGLAM attempts to predict future gameplay events. We implement and evaluate PreGLAM in a custom game \\n<italic>Galactic Defense</i>\\n, which we also describe. PreGLAM significantly outperforms a random walk time series in how accurately it matches ground-truth annotations and has comparable accuracy to state-of-the-art affect models.\",\"PeriodicalId\":55977,\"journal\":{\"name\":\"IEEE Transactions on Games\",\"volume\":\"16 3\",\"pages\":\"497-508\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Games\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10157980/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10157980/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们介绍了基于游戏的预测性分层情感模型(PreGLAM),这是一种可灵活集成到游戏设计流程中的情感游戏观众模型。PreGLAM 结合了实时玩家体验模型和非玩家角色情感模型的元素,可在游戏过程中为观众的情绪、唤醒度和紧张度输出实时估计值。由于紧张度与预期事件相关,因此 PreGLAM 试图预测未来的游戏事件。我们在定制游戏《银河防御》中实施并评估了 PreGLAM,并对其进行了描述。PreGLAM 在与地面实况注释的匹配准确度方面明显优于随机行走时间序列,其准确度与最先进的影响模型相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PreGLAM: A Predictive Gameplay-Based Layered Affect Model
In this article, we present the Predictive Gameplay-based Layered Affect Model (PreGLAM), an affective game spectator model that flexibly integrates into a game design process. PreGLAM combines elements of real-time player experience models and affective nonplayer-character models to output real-time estimated values for a spectator's valence, arousal, and tension during gameplay. Because tension is related to prospective events, PreGLAM attempts to predict future gameplay events. We implement and evaluate PreGLAM in a custom game Galactic Defense , which we also describe. PreGLAM significantly outperforms a random walk time series in how accurately it matches ground-truth annotations and has comparable accuracy to state-of-the-art affect models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Games
IEEE Transactions on Games Engineering-Electrical and Electronic Engineering
CiteScore
4.60
自引率
8.70%
发文量
87
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信