Koundinya Varma;Brahad Kokad;Anis Fatema;Aftab M. Hussain
{"title":"利用低成本鞋内传感器阵列通过足底压力分析进行表面特征描述","authors":"Koundinya Varma;Brahad Kokad;Anis Fatema;Aftab M. Hussain","doi":"10.1109/LSENS.2024.3455429","DOIUrl":null,"url":null,"abstract":"Analysis of foot pressure, also known as plantar pressure analysis, plays a pivotal role in biomedical assessments related to posture and gait analysis. Extensive research has been conducted on leveraging this technique for clinical purposes, leading to the development of flexible pressure sensors. In this letter, we present the use of in-shoe flexible pressure sensor array for determining the nature of the walking surface. The sensor system is fabricated using eight low-cost and robust, in-shoe pressure sensors that leverage the piezoresistivity of velostat. The sensor array was characterized for four different surface types. Random Forest (RF) algorithm was used to classify the surfaces with 86% accuracy. Based on this analysis, we propose a novel method for analyzing various surfaces based on their attributes such as firmness, rigidity, and penetrability. Such a device can be used for ascertaining surface characteristics after construction, or playing surfaces in a stadium.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Characterization by Plantar Pressure Analysis Using Low-Cost in-Shoe Sensor Array\",\"authors\":\"Koundinya Varma;Brahad Kokad;Anis Fatema;Aftab M. Hussain\",\"doi\":\"10.1109/LSENS.2024.3455429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis of foot pressure, also known as plantar pressure analysis, plays a pivotal role in biomedical assessments related to posture and gait analysis. Extensive research has been conducted on leveraging this technique for clinical purposes, leading to the development of flexible pressure sensors. In this letter, we present the use of in-shoe flexible pressure sensor array for determining the nature of the walking surface. The sensor system is fabricated using eight low-cost and robust, in-shoe pressure sensors that leverage the piezoresistivity of velostat. The sensor array was characterized for four different surface types. Random Forest (RF) algorithm was used to classify the surfaces with 86% accuracy. Based on this analysis, we propose a novel method for analyzing various surfaces based on their attributes such as firmness, rigidity, and penetrability. Such a device can be used for ascertaining surface characteristics after construction, or playing surfaces in a stadium.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 10\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10667673/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10667673/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Surface Characterization by Plantar Pressure Analysis Using Low-Cost in-Shoe Sensor Array
Analysis of foot pressure, also known as plantar pressure analysis, plays a pivotal role in biomedical assessments related to posture and gait analysis. Extensive research has been conducted on leveraging this technique for clinical purposes, leading to the development of flexible pressure sensors. In this letter, we present the use of in-shoe flexible pressure sensor array for determining the nature of the walking surface. The sensor system is fabricated using eight low-cost and robust, in-shoe pressure sensors that leverage the piezoresistivity of velostat. The sensor array was characterized for four different surface types. Random Forest (RF) algorithm was used to classify the surfaces with 86% accuracy. Based on this analysis, we propose a novel method for analyzing various surfaces based on their attributes such as firmness, rigidity, and penetrability. Such a device can be used for ascertaining surface characteristics after construction, or playing surfaces in a stadium.