Claire Overly Cottom, Robert Stephenson, Dante Ricci, Lixinhao Yang, James C. Gumbart, Nicholas Noinaj
{"title":"鲍曼不动杆菌 POTRA 结构域的结构表征揭示了 BamA 的新构象","authors":"Claire Overly Cottom, Robert Stephenson, Dante Ricci, Lixinhao Yang, James C. Gumbart, Nicholas Noinaj","doi":"10.1016/j.str.2024.08.013","DOIUrl":null,"url":null,"abstract":"<p>Recent studies have demonstrated BamA, the central component of the β-barrel assembly machinery (BAM), as an important therapeutic target to combat infections caused by <em>Acinetobacter baumannii</em> and other Gram-negative pathogens. Homology modeling indicates BamA in <em>A. baumannii</em> consists of five polypeptide transport-associated (POTRA) domains and a β-barrel membrane domain. We characterized the POTRA domains of BamA from <em>A. baumannii</em> in solution using size-exclusion chromatography small angle X-ray scattering (SEC-SAXS) analysis and determined crystal structures in two conformational states that are drastically different than those previously observed in BamA from other bacteria, indicating that the POTRA domains are even more conformationally dynamic than has been observed previously. Molecular dynamics simulations of the POTRA domains from <em>A. baumannii</em> and <em>Escherichia coli</em> allowed us to identify key structural features that contribute to the observed novel states. Together, these studies expand on our current understanding of the conformational plasticity within BamA across differing bacterial species.</p>","PeriodicalId":22168,"journal":{"name":"Structure","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural characterization of the POTRA domains from A. baumannii reveals new conformations in BamA\",\"authors\":\"Claire Overly Cottom, Robert Stephenson, Dante Ricci, Lixinhao Yang, James C. Gumbart, Nicholas Noinaj\",\"doi\":\"10.1016/j.str.2024.08.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent studies have demonstrated BamA, the central component of the β-barrel assembly machinery (BAM), as an important therapeutic target to combat infections caused by <em>Acinetobacter baumannii</em> and other Gram-negative pathogens. Homology modeling indicates BamA in <em>A. baumannii</em> consists of five polypeptide transport-associated (POTRA) domains and a β-barrel membrane domain. We characterized the POTRA domains of BamA from <em>A. baumannii</em> in solution using size-exclusion chromatography small angle X-ray scattering (SEC-SAXS) analysis and determined crystal structures in two conformational states that are drastically different than those previously observed in BamA from other bacteria, indicating that the POTRA domains are even more conformationally dynamic than has been observed previously. Molecular dynamics simulations of the POTRA domains from <em>A. baumannii</em> and <em>Escherichia coli</em> allowed us to identify key structural features that contribute to the observed novel states. Together, these studies expand on our current understanding of the conformational plasticity within BamA across differing bacterial species.</p>\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2024.08.013\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.08.013","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Structural characterization of the POTRA domains from A. baumannii reveals new conformations in BamA
Recent studies have demonstrated BamA, the central component of the β-barrel assembly machinery (BAM), as an important therapeutic target to combat infections caused by Acinetobacter baumannii and other Gram-negative pathogens. Homology modeling indicates BamA in A. baumannii consists of five polypeptide transport-associated (POTRA) domains and a β-barrel membrane domain. We characterized the POTRA domains of BamA from A. baumannii in solution using size-exclusion chromatography small angle X-ray scattering (SEC-SAXS) analysis and determined crystal structures in two conformational states that are drastically different than those previously observed in BamA from other bacteria, indicating that the POTRA domains are even more conformationally dynamic than has been observed previously. Molecular dynamics simulations of the POTRA domains from A. baumannii and Escherichia coli allowed us to identify key structural features that contribute to the observed novel states. Together, these studies expand on our current understanding of the conformational plasticity within BamA across differing bacterial species.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.