相分离纳米抗生素通过精确靶向外膜EcDsbA提高耐多药大肠杆菌败血症的存活率

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pengfei Zou, Lin Huang, Yi Li, Dan Liu, Junwei Che, Te Zhao, Hui Li, Jiaxin Li, Ya-Nan Cui, Guobao Yang, Zhiping Li, Li-Li Li, Chunsheng Gao
{"title":"相分离纳米抗生素通过精确靶向外膜EcDsbA提高耐多药大肠杆菌败血症的存活率","authors":"Pengfei Zou,&nbsp;Lin Huang,&nbsp;Yi Li,&nbsp;Dan Liu,&nbsp;Junwei Che,&nbsp;Te Zhao,&nbsp;Hui Li,&nbsp;Jiaxin Li,&nbsp;Ya-Nan Cui,&nbsp;Guobao Yang,&nbsp;Zhiping Li,&nbsp;Li-Li Li,&nbsp;Chunsheng Gao","doi":"10.1002/adma.202407152","DOIUrl":null,"url":null,"abstract":"<p>Disulfide bond (Dsb) proteins, especially DsbA, represent a promising but as-yet-unrealized target in combating multidrug-resistant (MDR) bacteria because their precise subcellular targeting through multibarrier remains a significant challenge. Here, a novel heterogenization-phase-separated nano-antibiotics (<b>NCefoTs</b>) is proposed, through the co-assembly of enzyme-inhibiting lipopeptides (ELp component), membrane-recognizing and disrupting lipopeptides (MLp component), and cefoperazone. The self-sorting components of MLp “concentrated island-liked clusters” on the surface of <b>NCefoTs</b> promote the efficient penetration of <b>NCefoTs</b> through the outer membrane. Triggered by the DsbA, the precisely spatiotemporal engineered <b>NCefoTs</b> transform to nanofibers in situ and further significantly enhance the inhibition of DsbA. The hydrolytic activity of β-lactamase and the motility function of flagella are thereby impeded, confirming the efficacy of <b>NCefoTs</b> in restoring susceptibility to antibiotics and inhibiting infection dissemination. By these synergistic effects of <b>NCefoTs</b>, the minimum inhibitory concentration of antibiotics decreases from over 300 µM to 1.56 µM for clinically isolated <i>E. coli</i> MDR. The survival rate of sepsis-inflicted mice is significantly enhanced from 0% to 92% upon encapsulation of cefoperazone in <b>NCefoTs</b>, which rapidly eliminates invading pathogens and mitigates inflammation. The universally applicable delivery system, based on an “on demands” strategy, presents a promising prospect for undruggable antibiotic targets in the periplasm to combat MDR bacteria.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 44","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase-Separated Nano-Antibiotics Enhanced Survival in Multidrug-Resistant Escherichia coli Sepsis by Precise Periplasmic EcDsbA Targeting\",\"authors\":\"Pengfei Zou,&nbsp;Lin Huang,&nbsp;Yi Li,&nbsp;Dan Liu,&nbsp;Junwei Che,&nbsp;Te Zhao,&nbsp;Hui Li,&nbsp;Jiaxin Li,&nbsp;Ya-Nan Cui,&nbsp;Guobao Yang,&nbsp;Zhiping Li,&nbsp;Li-Li Li,&nbsp;Chunsheng Gao\",\"doi\":\"10.1002/adma.202407152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Disulfide bond (Dsb) proteins, especially DsbA, represent a promising but as-yet-unrealized target in combating multidrug-resistant (MDR) bacteria because their precise subcellular targeting through multibarrier remains a significant challenge. Here, a novel heterogenization-phase-separated nano-antibiotics (<b>NCefoTs</b>) is proposed, through the co-assembly of enzyme-inhibiting lipopeptides (ELp component), membrane-recognizing and disrupting lipopeptides (MLp component), and cefoperazone. The self-sorting components of MLp “concentrated island-liked clusters” on the surface of <b>NCefoTs</b> promote the efficient penetration of <b>NCefoTs</b> through the outer membrane. Triggered by the DsbA, the precisely spatiotemporal engineered <b>NCefoTs</b> transform to nanofibers in situ and further significantly enhance the inhibition of DsbA. The hydrolytic activity of β-lactamase and the motility function of flagella are thereby impeded, confirming the efficacy of <b>NCefoTs</b> in restoring susceptibility to antibiotics and inhibiting infection dissemination. By these synergistic effects of <b>NCefoTs</b>, the minimum inhibitory concentration of antibiotics decreases from over 300 µM to 1.56 µM for clinically isolated <i>E. coli</i> MDR. The survival rate of sepsis-inflicted mice is significantly enhanced from 0% to 92% upon encapsulation of cefoperazone in <b>NCefoTs</b>, which rapidly eliminates invading pathogens and mitigates inflammation. The universally applicable delivery system, based on an “on demands” strategy, presents a promising prospect for undruggable antibiotic targets in the periplasm to combat MDR bacteria.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"36 44\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202407152\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202407152","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二硫键(Dsb)蛋白,尤其是 DsbA,是抗击耐多药(MDR)细菌的一个前景广阔但尚未实现的靶点,因为通过多屏障对其进行亚细胞靶向精确定位仍是一项重大挑战。在这里,我们提出了一种新型的异质化相分离纳米抗生素(NCefoTs),它由酶抑制脂肽(ELp 成分)、膜识别和破坏脂肽(MLp 成分)以及头孢哌酮共同组成。MLp 的自分类成分在 NCefoTs 表面形成了 "集中岛状集群",促进了 NCefoTs 对外膜的有效渗透。在 DsbA 的触发下,精确时空设计的 NCefoTs 在原位转化为纳米纤维,进一步显著增强了对 DsbA 的抑制作用。这样,β-内酰胺酶的水解活性和鞭毛的运动功能就会受到阻碍,从而证实了 NCefoTs 在恢复抗生素敏感性和抑制感染扩散方面的功效。通过 NCefoTs 的这些协同作用,临床分离出的 MDR 大肠杆菌的抗生素最小抑菌浓度从 300 µM 以上降至 1.56 µM。在 NCefoTs 中封装头孢哌酮后,败血症小鼠的存活率从 0% 显著提高到 92%,从而迅速消灭入侵的病原体并减轻炎症。这种基于 "按需 "策略的普遍适用的递送系统,为抗生素在周质中的不可药用靶点提供了广阔的前景,可用于抗击耐药菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Phase-Separated Nano-Antibiotics Enhanced Survival in Multidrug-Resistant Escherichia coli Sepsis by Precise Periplasmic EcDsbA Targeting

Phase-Separated Nano-Antibiotics Enhanced Survival in Multidrug-Resistant Escherichia coli Sepsis by Precise Periplasmic EcDsbA Targeting

Disulfide bond (Dsb) proteins, especially DsbA, represent a promising but as-yet-unrealized target in combating multidrug-resistant (MDR) bacteria because their precise subcellular targeting through multibarrier remains a significant challenge. Here, a novel heterogenization-phase-separated nano-antibiotics (NCefoTs) is proposed, through the co-assembly of enzyme-inhibiting lipopeptides (ELp component), membrane-recognizing and disrupting lipopeptides (MLp component), and cefoperazone. The self-sorting components of MLp “concentrated island-liked clusters” on the surface of NCefoTs promote the efficient penetration of NCefoTs through the outer membrane. Triggered by the DsbA, the precisely spatiotemporal engineered NCefoTs transform to nanofibers in situ and further significantly enhance the inhibition of DsbA. The hydrolytic activity of β-lactamase and the motility function of flagella are thereby impeded, confirming the efficacy of NCefoTs in restoring susceptibility to antibiotics and inhibiting infection dissemination. By these synergistic effects of NCefoTs, the minimum inhibitory concentration of antibiotics decreases from over 300 µM to 1.56 µM for clinically isolated E. coli MDR. The survival rate of sepsis-inflicted mice is significantly enhanced from 0% to 92% upon encapsulation of cefoperazone in NCefoTs, which rapidly eliminates invading pathogens and mitigates inflammation. The universally applicable delivery system, based on an “on demands” strategy, presents a promising prospect for undruggable antibiotic targets in the periplasm to combat MDR bacteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信