利用扫描探针显微镜识别二氧化碳自组装岛的结构和缺陷

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-09-17 DOI:10.1021/acsnano.4c07034
Oscar Custance, Emiliano Ventura-Macias, Oleksandr Stetsovych, Carlos Romero-Muñiz, Tomoko K. Shimizu, Pablo Pou, Masayuki Abe, Hironobu Hayashi, Tadakatsu Ohkubo, Shigeki Kawai, Ruben Perez
{"title":"利用扫描探针显微镜识别二氧化碳自组装岛的结构和缺陷","authors":"Oscar Custance, Emiliano Ventura-Macias, Oleksandr Stetsovych, Carlos Romero-Muñiz, Tomoko K. Shimizu, Pablo Pou, Masayuki Abe, Hironobu Hayashi, Tadakatsu Ohkubo, Shigeki Kawai, Ruben Perez","doi":"10.1021/acsnano.4c07034","DOIUrl":null,"url":null,"abstract":"Understanding how carbon dioxide (CO<sub>2</sub>) behaves and interacts with surfaces is paramount for the development of sensors and materials to attempt CO<sub>2</sub> mitigation and catalysis. Here, we combine simultaneous atomic force microscopy (AFM) and scanning tunneling microscopy (STM) using CO-functionalized probes with density functional theory (DFT)-based simulations to gain fundamental insight into the behavior of physisorbed CO<sub>2</sub> molecules on a gold(111) surface that also contains one-dimensional metal–organic chains formed by 1,4-phenylene diisocyanide (PDI) bridged by gold (Au) adatoms. We resolve the structure of self-assembled CO<sub>2</sub> islands, both confined between the PDI–Au chains as well as free-standing on the surface and reveal a chiral arrangement of CO<sub>2</sub> molecules in a windmill-like structure that encloses a standing-up CO<sub>2</sub> molecule and other foreign species existing at the surface. We identify these species by the comparison of height-dependent AFM and STM imaging with DFT-calculated images and clarify the origin of the kagome tiling exhibited by this surface system. Our results show the complementarity of AFM and STM using functionalized probes and their potential, when combined with DFT, to explore greenhouse gas molecules at surface-supported model systems.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure and Defect Identification at Self-Assembled Islands of CO2 Using Scanning Probe Microscopy\",\"authors\":\"Oscar Custance, Emiliano Ventura-Macias, Oleksandr Stetsovych, Carlos Romero-Muñiz, Tomoko K. Shimizu, Pablo Pou, Masayuki Abe, Hironobu Hayashi, Tadakatsu Ohkubo, Shigeki Kawai, Ruben Perez\",\"doi\":\"10.1021/acsnano.4c07034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding how carbon dioxide (CO<sub>2</sub>) behaves and interacts with surfaces is paramount for the development of sensors and materials to attempt CO<sub>2</sub> mitigation and catalysis. Here, we combine simultaneous atomic force microscopy (AFM) and scanning tunneling microscopy (STM) using CO-functionalized probes with density functional theory (DFT)-based simulations to gain fundamental insight into the behavior of physisorbed CO<sub>2</sub> molecules on a gold(111) surface that also contains one-dimensional metal–organic chains formed by 1,4-phenylene diisocyanide (PDI) bridged by gold (Au) adatoms. We resolve the structure of self-assembled CO<sub>2</sub> islands, both confined between the PDI–Au chains as well as free-standing on the surface and reveal a chiral arrangement of CO<sub>2</sub> molecules in a windmill-like structure that encloses a standing-up CO<sub>2</sub> molecule and other foreign species existing at the surface. We identify these species by the comparison of height-dependent AFM and STM imaging with DFT-calculated images and clarify the origin of the kagome tiling exhibited by this surface system. Our results show the complementarity of AFM and STM using functionalized probes and their potential, when combined with DFT, to explore greenhouse gas molecules at surface-supported model systems.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c07034\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c07034","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解二氧化碳(CO2)的行为及与表面的相互作用对于开发传感器和材料以尝试二氧化碳减排和催化至关重要。在这里,我们将使用 CO 功能化探针的同步原子力显微镜 (AFM) 和扫描隧道显微镜 (STM) 与基于密度泛函理论 (DFT) 的模拟相结合,从根本上了解了物理吸附的 CO2 分子在金 (111) 表面上的行为,该表面还包含由金 (Au) 金原子桥接的 1,4- 苯基二异氰酸酯 (PDI) 形成的一维金属有机链。我们解析了 PDI-Au 链之间以及表面独立的自组装二氧化碳岛的结构,并揭示了二氧化碳分子在风车状结构中的手性排列,该结构包围了一个独立的二氧化碳分子和存在于表面的其他外来物种。我们通过高度依赖性 AFM 和 STM 成像与 DFT 计算图像的比较来识别这些物种,并阐明了该表面系统所表现出的 "卡戈米 "状排列的起源。我们的研究结果表明了使用功能化探针的 AFM 和 STM 的互补性,以及它们与 DFT 结合探索表面支撑模型系统中温室气体分子的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure and Defect Identification at Self-Assembled Islands of CO2 Using Scanning Probe Microscopy
Understanding how carbon dioxide (CO2) behaves and interacts with surfaces is paramount for the development of sensors and materials to attempt CO2 mitigation and catalysis. Here, we combine simultaneous atomic force microscopy (AFM) and scanning tunneling microscopy (STM) using CO-functionalized probes with density functional theory (DFT)-based simulations to gain fundamental insight into the behavior of physisorbed CO2 molecules on a gold(111) surface that also contains one-dimensional metal–organic chains formed by 1,4-phenylene diisocyanide (PDI) bridged by gold (Au) adatoms. We resolve the structure of self-assembled CO2 islands, both confined between the PDI–Au chains as well as free-standing on the surface and reveal a chiral arrangement of CO2 molecules in a windmill-like structure that encloses a standing-up CO2 molecule and other foreign species existing at the surface. We identify these species by the comparison of height-dependent AFM and STM imaging with DFT-calculated images and clarify the origin of the kagome tiling exhibited by this surface system. Our results show the complementarity of AFM and STM using functionalized probes and their potential, when combined with DFT, to explore greenhouse gas molecules at surface-supported model systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信