图的支配集平均阶数的严格上限

IF 0.9 3区 数学 Q2 MATHEMATICS
Iain Beaton, Ben Cameron
{"title":"图的支配集平均阶数的严格上限","authors":"Iain Beaton,&nbsp;Ben Cameron","doi":"10.1002/jgt.23143","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the average order of dominating sets in a graph, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mstyle>\n <mspace></mspace>\n \n <mtext>avd</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\,\\text{avd}\\,(G)$</annotation>\n </semantics></math>. Like other average graph parameters, the extremal graphs are of interest. Beaton and Brown conjectured that for all graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> without isolated vertices, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mspace></mspace>\n \n <mtext>avd</mtext>\n <mspace></mspace>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>/</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $\\,\\text{avd}\\,(G)\\le 2n/3$</annotation>\n </semantics></math>. Recently, Erey proved the conjecture for forests without isolated vertices. In this paper we prove the conjecture and classify which graphs have <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mspace></mspace>\n \n <mtext>avd</mtext>\n <mspace></mspace>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>/</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $\\,\\text{avd}\\,(G)=2n/3$</annotation>\n </semantics></math>. We also use our bounds to prove an average version of Vizing's conjecture.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 3","pages":"463-477"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23143","citationCount":"0","resultStr":"{\"title\":\"A tight upper bound on the average order of dominating sets of a graph\",\"authors\":\"Iain Beaton,&nbsp;Ben Cameron\",\"doi\":\"10.1002/jgt.23143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study the average order of dominating sets in a graph, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>avd</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\,\\\\text{avd}\\\\,(G)$</annotation>\\n </semantics></math>. Like other average graph parameters, the extremal graphs are of interest. Beaton and Brown conjectured that for all graphs <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> of order <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> without isolated vertices, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mspace></mspace>\\n \\n <mtext>avd</mtext>\\n <mspace></mspace>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n \\n <mi>n</mi>\\n \\n <mo>/</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\,\\\\text{avd}\\\\,(G)\\\\le 2n/3$</annotation>\\n </semantics></math>. Recently, Erey proved the conjecture for forests without isolated vertices. In this paper we prove the conjecture and classify which graphs have <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mspace></mspace>\\n \\n <mtext>avd</mtext>\\n <mspace></mspace>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mn>2</mn>\\n \\n <mi>n</mi>\\n \\n <mo>/</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\,\\\\text{avd}\\\\,(G)=2n/3$</annotation>\\n </semantics></math>. We also use our bounds to prove an average version of Vizing's conjecture.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"107 3\",\"pages\":\"463-477\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23143\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23143\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23143","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究图中支配集的平均阶数 avd ( G ) $\,\text{avd}\,(G)$ 。与其他平均图参数一样,极值图也很值得关注。比顿和布朗猜想,对于所有阶数为 n $n$ 的无孤立顶点的图 G $G$ ,avd ( G ) ≤ 2 n / 3 $,\text{avd}\,(G)\le 2n/3$ 。最近,埃雷证明了无孤立顶点森林的猜想。在本文中,我们证明了这个猜想,并分类了哪些图具有 avd ( G ) = 2 n / 3 $\,\text{avd}\,(G)=2n/3$ 。我们还利用我们的边界证明了平均版本的 Vizing 猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A tight upper bound on the average order of dominating sets of a graph

A tight upper bound on the average order of dominating sets of a graph

In this paper we study the average order of dominating sets in a graph, avd ( G ) $\,\text{avd}\,(G)$ . Like other average graph parameters, the extremal graphs are of interest. Beaton and Brown conjectured that for all graphs G $G$ of order n $n$ without isolated vertices, avd ( G ) 2 n / 3 $\,\text{avd}\,(G)\le 2n/3$ . Recently, Erey proved the conjecture for forests without isolated vertices. In this paper we prove the conjecture and classify which graphs have avd ( G ) = 2 n / 3 $\,\text{avd}\,(G)=2n/3$ . We also use our bounds to prove an average version of Vizing's conjecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信