{"title":"图的支配集平均阶数的严格上限","authors":"Iain Beaton, Ben Cameron","doi":"10.1002/jgt.23143","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the average order of dominating sets in a graph, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mstyle>\n <mspace></mspace>\n \n <mtext>avd</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\,\\text{avd}\\,(G)$</annotation>\n </semantics></math>. Like other average graph parameters, the extremal graphs are of interest. Beaton and Brown conjectured that for all graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> without isolated vertices, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mspace></mspace>\n \n <mtext>avd</mtext>\n <mspace></mspace>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>/</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $\\,\\text{avd}\\,(G)\\le 2n/3$</annotation>\n </semantics></math>. Recently, Erey proved the conjecture for forests without isolated vertices. In this paper we prove the conjecture and classify which graphs have <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mspace></mspace>\n \n <mtext>avd</mtext>\n <mspace></mspace>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>/</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n <annotation> $\\,\\text{avd}\\,(G)=2n/3$</annotation>\n </semantics></math>. We also use our bounds to prove an average version of Vizing's conjecture.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 3","pages":"463-477"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23143","citationCount":"0","resultStr":"{\"title\":\"A tight upper bound on the average order of dominating sets of a graph\",\"authors\":\"Iain Beaton, Ben Cameron\",\"doi\":\"10.1002/jgt.23143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study the average order of dominating sets in a graph, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>avd</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\,\\\\text{avd}\\\\,(G)$</annotation>\\n </semantics></math>. Like other average graph parameters, the extremal graphs are of interest. Beaton and Brown conjectured that for all graphs <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> of order <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> without isolated vertices, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mspace></mspace>\\n \\n <mtext>avd</mtext>\\n <mspace></mspace>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n \\n <mi>n</mi>\\n \\n <mo>/</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\,\\\\text{avd}\\\\,(G)\\\\le 2n/3$</annotation>\\n </semantics></math>. Recently, Erey proved the conjecture for forests without isolated vertices. In this paper we prove the conjecture and classify which graphs have <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mspace></mspace>\\n \\n <mtext>avd</mtext>\\n <mspace></mspace>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mn>2</mn>\\n \\n <mi>n</mi>\\n \\n <mo>/</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\,\\\\text{avd}\\\\,(G)=2n/3$</annotation>\\n </semantics></math>. We also use our bounds to prove an average version of Vizing's conjecture.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"107 3\",\"pages\":\"463-477\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23143\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23143\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23143","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究图中支配集的平均阶数 avd ( G ) $\,\text{avd}\,(G)$ 。与其他平均图参数一样,极值图也很值得关注。比顿和布朗猜想,对于所有阶数为 n $n$ 的无孤立顶点的图 G $G$ ,avd ( G ) ≤ 2 n / 3 $,\text{avd}\,(G)\le 2n/3$ 。最近,埃雷证明了无孤立顶点森林的猜想。在本文中,我们证明了这个猜想,并分类了哪些图具有 avd ( G ) = 2 n / 3 $\,\text{avd}\,(G)=2n/3$ 。我们还利用我们的边界证明了平均版本的 Vizing 猜想。
A tight upper bound on the average order of dominating sets of a graph
In this paper we study the average order of dominating sets in a graph, . Like other average graph parameters, the extremal graphs are of interest. Beaton and Brown conjectured that for all graphs of order without isolated vertices, . Recently, Erey proved the conjecture for forests without isolated vertices. In this paper we prove the conjecture and classify which graphs have . We also use our bounds to prove an average version of Vizing's conjecture.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .