高连接三元组和马德猜想

IF 0.9 3区 数学 Q2 MATHEMATICS
Qinghai Liu, Kai Ying, Yanmei Hong
{"title":"高连接三元组和马德猜想","authors":"Qinghai Liu,&nbsp;Kai Ying,&nbsp;Yanmei Hong","doi":"10.1002/jgt.23144","DOIUrl":null,"url":null,"abstract":"<p>Mader proved that, for any tree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>T</mi>\n </mrow>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math> of order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math>, every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-connected graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n \n <msup>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>+</mo>\n \n <mi>m</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mn>2</mn>\n </msup>\n \n <mo>+</mo>\n \n <mi>m</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $\\delta (G)\\ge 2{(k+m-1)}^{2}+m-1$</annotation>\n </semantics></math> contains a subtree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>T</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>≅</mo>\n \n <mi>T</mi>\n </mrow>\n </mrow>\n <annotation> ${T}^{^{\\prime} }\\cong T$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>T</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $G-V({T}^{^{\\prime} })$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-connected. We proved that any graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with minimum degree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n \n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $\\delta (G)\\ge 2k$</annotation>\n </semantics></math> contains <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-connected triples. As a corollary, we prove that, for any tree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>T</mi>\n </mrow>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math> of order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math>, every <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-connected graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>δ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n \n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>4</mn>\n \n <mi>m</mi>\n \n <mo>−</mo>\n \n <mn>6</mn>\n </mrow>\n </mrow>\n <annotation> $\\delta (G)\\ge 3k+4m-6$</annotation>\n </semantics></math> contains a subtree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>T</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>≅</mo>\n \n <mi>T</mi>\n </mrow>\n </mrow>\n <annotation> ${T}^{^{\\prime} }\\cong T$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>T</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $G-V({T}^{^{\\prime} })$</annotation>\n </semantics></math> is still <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-connected, improving Mader's condition to a linear bound.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 3","pages":"478-484"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly connected triples and Mader's conjecture\",\"authors\":\"Qinghai Liu,&nbsp;Kai Ying,&nbsp;Yanmei Hong\",\"doi\":\"10.1002/jgt.23144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mader proved that, for any tree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math> of order <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n <annotation> $m$</annotation>\\n </semantics></math>, every <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-connected graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n \\n <msup>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>+</mo>\\n \\n <mi>m</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>+</mo>\\n \\n <mi>m</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\delta (G)\\\\ge 2{(k+m-1)}^{2}+m-1$</annotation>\\n </semantics></math> contains a subtree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>T</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mo>≅</mo>\\n \\n <mi>T</mi>\\n </mrow>\\n </mrow>\\n <annotation> ${T}^{^{\\\\prime} }\\\\cong T$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>−</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>T</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $G-V({T}^{^{\\\\prime} })$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-connected. We proved that any graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> with minimum degree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n \\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\delta (G)\\\\ge 2k$</annotation>\\n </semantics></math> contains <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-connected triples. As a corollary, we prove that, for any tree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math> of order <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n <annotation> $m$</annotation>\\n </semantics></math>, every <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-connected graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>δ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mn>3</mn>\\n \\n <mi>k</mi>\\n \\n <mo>+</mo>\\n \\n <mn>4</mn>\\n \\n <mi>m</mi>\\n \\n <mo>−</mo>\\n \\n <mn>6</mn>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\delta (G)\\\\ge 3k+4m-6$</annotation>\\n </semantics></math> contains a subtree <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>T</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mo>≅</mo>\\n \\n <mi>T</mi>\\n </mrow>\\n </mrow>\\n <annotation> ${T}^{^{\\\\prime} }\\\\cong T$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>−</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>T</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $G-V({T}^{^{\\\\prime} })$</annotation>\\n </semantics></math> is still <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-connected, improving Mader's condition to a linear bound.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"107 3\",\"pages\":\"478-484\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23144\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23144","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

作为推论,我们证明对于任何阶数为 m $m$ 的树 T $T$ ,每一个 k $k$ -connected graph G $G$ δ ( G ) ≥ 3 k + 4 m - 6 $\delta (G)\ge 3k+4m-6$ 都包含一个子树 T ′ ≅ T ${T}^{^{\prime} }\cong T$,使得 G - V ( T ′ ) $G-V({T}^{^{\prime} })$ 仍然是 k $k$ -connected 的,从而将马德的条件改进为线性约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly connected triples and Mader's conjecture

Mader proved that, for any tree T $T$ of order m $m$ , every k $k$ -connected graph G $G$ with δ ( G ) 2 ( k + m 1 ) 2 + m 1 $\delta (G)\ge 2{(k+m-1)}^{2}+m-1$ contains a subtree T T ${T}^{^{\prime} }\cong T$ such that G V ( T ) $G-V({T}^{^{\prime} })$ is k $k$ -connected. We proved that any graph G $G$ with minimum degree δ ( G ) 2 k $\delta (G)\ge 2k$ contains k $k$ -connected triples. As a corollary, we prove that, for any tree T $T$ of order m $m$ , every k $k$ -connected graph G $G$ with δ ( G ) 3 k + 4 m 6 $\delta (G)\ge 3k+4m-6$ contains a subtree T T ${T}^{^{\prime} }\cong T$ such that G V ( T ) $G-V({T}^{^{\prime} })$ is still k $k$ -connected, improving Mader's condition to a linear bound.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信