低贝塔等离子体中斜向传播惠斯勒波的粒子模拟研究

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Yifan Wu, Jinsong Zhao, Xin Tao, Lei Dai
{"title":"低贝塔等离子体中斜向传播惠斯勒波的粒子模拟研究","authors":"Yifan Wu,&nbsp;Jinsong Zhao,&nbsp;Xin Tao,&nbsp;Lei Dai","doi":"10.1029/2024JA033035","DOIUrl":null,"url":null,"abstract":"<p>Whistler mode waves, which are electromagnetic emissions commonly observed in various space plasma environments, play critical roles in electron dynamics. While most whistler waves are driven by temperature anisotropy and propagate parallel to the background magnetic field, these waves can also be excited in the oblique direction when electron plasma beta is very low (&lt;0.025). Although linear theory accounts for the excitation processes of obliquely propagating whistler waves, the subsequent evolution and saturation processes remain inadequately understood. This study utilizes two-dimensional self-consistent simulations to investigate the complete wave-particle interaction process. By scanning a broad parameter range, we derive scaling laws for the wave intensity, linking the wave properties to initial and final plasma conditions. The saturated temperature anisotropy from simulations can explain the upper bound anisotropy constraint observed by spacecraft well. Additional phase space analysis shows that both Landau and cyclotron resonance play critical roles in the evolution of electron velocity distribution, albeit in different energy ranges. Oblique whistler waves can effectively heat electrons through Landau resonance, creating a plateau distribution in the parallel direction. This research advances our understanding of the mechanisms behind obliquely propagating whistler waves in low-beta plasmas and their impact on electron dynamics.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle Simulation Study of Obliquely Propagating Whistler Waves in Low-Beta Plasmas\",\"authors\":\"Yifan Wu,&nbsp;Jinsong Zhao,&nbsp;Xin Tao,&nbsp;Lei Dai\",\"doi\":\"10.1029/2024JA033035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Whistler mode waves, which are electromagnetic emissions commonly observed in various space plasma environments, play critical roles in electron dynamics. While most whistler waves are driven by temperature anisotropy and propagate parallel to the background magnetic field, these waves can also be excited in the oblique direction when electron plasma beta is very low (&lt;0.025). Although linear theory accounts for the excitation processes of obliquely propagating whistler waves, the subsequent evolution and saturation processes remain inadequately understood. This study utilizes two-dimensional self-consistent simulations to investigate the complete wave-particle interaction process. By scanning a broad parameter range, we derive scaling laws for the wave intensity, linking the wave properties to initial and final plasma conditions. The saturated temperature anisotropy from simulations can explain the upper bound anisotropy constraint observed by spacecraft well. Additional phase space analysis shows that both Landau and cyclotron resonance play critical roles in the evolution of electron velocity distribution, albeit in different energy ranges. Oblique whistler waves can effectively heat electrons through Landau resonance, creating a plateau distribution in the parallel direction. This research advances our understanding of the mechanisms behind obliquely propagating whistler waves in low-beta plasmas and their impact on electron dynamics.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033035\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033035","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

惠斯勒模式波是在各种空间等离子体环境中普遍观测到的电磁辐射,在电子动力学中起着至关重要的作用。虽然大多数啸叫波是由温度各向异性驱动的,并平行于背景磁场传播,但当电子等离子体贝塔值很低时(<0.025),这些波也会被斜向激发。虽然线性理论解释了斜向传播的啸叫声波的激发过程,但对其后的演变和饱和过程仍缺乏足够的了解。本研究利用二维自洽模拟来研究完整的波粒相互作用过程。通过扫描广泛的参数范围,我们得出了波强的缩放规律,将波的特性与初始和最终等离子体条件联系起来。模拟得出的饱和温度各向异性可以很好地解释航天器观测到的各向异性上限约束。额外的相空间分析表明,朗道共振和回旋共振在电子速度分布的演化过程中起着关键作用,尽管能量范围不同。斜啸声波可以通过朗道共振有效地加热电子,在平行方向上形成高原分布。这项研究加深了我们对低贝塔等离子体中斜向传播啸叫波背后的机制及其对电子动力学影响的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Simulation Study of Obliquely Propagating Whistler Waves in Low-Beta Plasmas

Whistler mode waves, which are electromagnetic emissions commonly observed in various space plasma environments, play critical roles in electron dynamics. While most whistler waves are driven by temperature anisotropy and propagate parallel to the background magnetic field, these waves can also be excited in the oblique direction when electron plasma beta is very low (<0.025). Although linear theory accounts for the excitation processes of obliquely propagating whistler waves, the subsequent evolution and saturation processes remain inadequately understood. This study utilizes two-dimensional self-consistent simulations to investigate the complete wave-particle interaction process. By scanning a broad parameter range, we derive scaling laws for the wave intensity, linking the wave properties to initial and final plasma conditions. The saturated temperature anisotropy from simulations can explain the upper bound anisotropy constraint observed by spacecraft well. Additional phase space analysis shows that both Landau and cyclotron resonance play critical roles in the evolution of electron velocity distribution, albeit in different energy ranges. Oblique whistler waves can effectively heat electrons through Landau resonance, creating a plateau distribution in the parallel direction. This research advances our understanding of the mechanisms behind obliquely propagating whistler waves in low-beta plasmas and their impact on electron dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信