{"title":"用于图像压缩和最小二乘法求解的最大体积矩阵交叉近似法","authors":"Kenneth Allen, Ming-Jun Lai, Zhaiming Shen","doi":"10.1007/s10444-024-10196-7","DOIUrl":null,"url":null,"abstract":"<div><p>We study the classic matrix cross approximation based on the maximal volume submatrices. Our main results consist of an improvement of the classic estimate for matrix cross approximation and a greedy approach for finding the maximal volume submatrices. More precisely, we present a new proof of the classic estimate of the inequality with an improved constant. Also, we present a family of greedy maximal volume algorithms to improve the computational efficiency of matrix cross approximation. The proposed algorithms are shown to have theoretical guarantees of convergence. Finally, we present two applications: image compression and the least squares approximation of continuous functions. Our numerical results at the end of the paper demonstrate the effective performance of our approach.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal volume matrix cross approximation for image compression and least squares solution\",\"authors\":\"Kenneth Allen, Ming-Jun Lai, Zhaiming Shen\",\"doi\":\"10.1007/s10444-024-10196-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the classic matrix cross approximation based on the maximal volume submatrices. Our main results consist of an improvement of the classic estimate for matrix cross approximation and a greedy approach for finding the maximal volume submatrices. More precisely, we present a new proof of the classic estimate of the inequality with an improved constant. Also, we present a family of greedy maximal volume algorithms to improve the computational efficiency of matrix cross approximation. The proposed algorithms are shown to have theoretical guarantees of convergence. Finally, we present two applications: image compression and the least squares approximation of continuous functions. Our numerical results at the end of the paper demonstrate the effective performance of our approach.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10196-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10196-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Maximal volume matrix cross approximation for image compression and least squares solution
We study the classic matrix cross approximation based on the maximal volume submatrices. Our main results consist of an improvement of the classic estimate for matrix cross approximation and a greedy approach for finding the maximal volume submatrices. More precisely, we present a new proof of the classic estimate of the inequality with an improved constant. Also, we present a family of greedy maximal volume algorithms to improve the computational efficiency of matrix cross approximation. The proposed algorithms are shown to have theoretical guarantees of convergence. Finally, we present two applications: image compression and the least squares approximation of continuous functions. Our numerical results at the end of the paper demonstrate the effective performance of our approach.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.