用于图像压缩和最小二乘法求解的最大体积矩阵交叉近似法

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Kenneth Allen, Ming-Jun Lai, Zhaiming Shen
{"title":"用于图像压缩和最小二乘法求解的最大体积矩阵交叉近似法","authors":"Kenneth Allen,&nbsp;Ming-Jun Lai,&nbsp;Zhaiming Shen","doi":"10.1007/s10444-024-10196-7","DOIUrl":null,"url":null,"abstract":"<div><p>We study the classic matrix cross approximation based on the maximal volume submatrices. Our main results consist of an improvement of the classic estimate for matrix cross approximation and a greedy approach for finding the maximal volume submatrices. More precisely, we present a new proof of the classic estimate of the inequality with an improved constant. Also, we present a family of greedy maximal volume algorithms to improve the computational efficiency of matrix cross approximation. The proposed algorithms are shown to have theoretical guarantees of convergence. Finally, we present two applications: image compression and the least squares approximation of continuous functions. Our numerical results at the end of the paper demonstrate the effective performance of our approach.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal volume matrix cross approximation for image compression and least squares solution\",\"authors\":\"Kenneth Allen,&nbsp;Ming-Jun Lai,&nbsp;Zhaiming Shen\",\"doi\":\"10.1007/s10444-024-10196-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the classic matrix cross approximation based on the maximal volume submatrices. Our main results consist of an improvement of the classic estimate for matrix cross approximation and a greedy approach for finding the maximal volume submatrices. More precisely, we present a new proof of the classic estimate of the inequality with an improved constant. Also, we present a family of greedy maximal volume algorithms to improve the computational efficiency of matrix cross approximation. The proposed algorithms are shown to have theoretical guarantees of convergence. Finally, we present two applications: image compression and the least squares approximation of continuous functions. Our numerical results at the end of the paper demonstrate the effective performance of our approach.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10196-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10196-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了基于最大体积子矩阵的经典矩阵交叉近似。我们的主要成果包括对矩阵交叉近似经典估计值的改进,以及寻找最大体积子矩阵的贪婪方法。更准确地说,我们用一个改进的常数对不等式的经典估计进行了新的证明。此外,我们还提出了一系列贪心最大体积算法,以提高矩阵交叉逼近的计算效率。所提出的算法具有理论上的收敛保证。最后,我们介绍了两个应用:图像压缩和连续函数的最小二乘逼近。文末的数值结果证明了我们的方法的有效性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal volume matrix cross approximation for image compression and least squares solution

We study the classic matrix cross approximation based on the maximal volume submatrices. Our main results consist of an improvement of the classic estimate for matrix cross approximation and a greedy approach for finding the maximal volume submatrices. More precisely, we present a new proof of the classic estimate of the inequality with an improved constant. Also, we present a family of greedy maximal volume algorithms to improve the computational efficiency of matrix cross approximation. The proposed algorithms are shown to have theoretical guarantees of convergence. Finally, we present two applications: image compression and the least squares approximation of continuous functions. Our numerical results at the end of the paper demonstrate the effective performance of our approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信