Jianfeng Lin, Jian Miao, Katherine G. Schaefer, Charles M. Russell, Robert J. Pyron, Fuming Zhang, Quynh T. Phan, Norma V. Solis, Hong Liu, Masato Tashiro, Jonathan S. Dordick, Robert J. Linhardt, Michael R. Yeaman, Gavin M. King, Francisco N. Barrera, Brian M. Peters, Scott G. Filler
{"title":"硫酸化糖胺聚糖是白色念珠菌毒素念珠菌素的宿主上皮细胞靶标","authors":"Jianfeng Lin, Jian Miao, Katherine G. Schaefer, Charles M. Russell, Robert J. Pyron, Fuming Zhang, Quynh T. Phan, Norma V. Solis, Hong Liu, Masato Tashiro, Jonathan S. Dordick, Robert J. Linhardt, Michael R. Yeaman, Gavin M. King, Francisco N. Barrera, Brian M. Peters, Scott G. Filler","doi":"10.1038/s41564-024-01794-8","DOIUrl":null,"url":null,"abstract":"Candidalysin, a cytolytic peptide produced by the fungal pathogen Candida albicans, is a key virulence factor. However, its host cell targets remain elusive. Here we performed a genome-wide loss-of-function CRISPR screen in the TR146 human oral epithelial cell line and identified that disruption of genes (XYLT2, B3GALT6 and B3GAT3) in glycosaminoglycan (GAG) biosynthesis conferred resistance to damage induced by candidalysin and live C. albicans. Surface plasmon resonance and atomic force and electron microscopy indicated that candidalysin binds to sulfated GAGs, facilitating its enrichment on the host cell surface. Adding exogenous sulfated GAGs or the analogue dextran sulfate protected cells against candidalysin-induced damage. Dextran sulfate also inhibited C. albicans invasion and fungal-induced epithelial cell cytokine production. In mice with vulvovaginal candidiasis, topical dextran sulfate administration reduced intravaginal tissue damage and inflammation. Collectively, sulfated GAGs are epithelial cell targets of candidalysin and can be used therapeutically to protect cells from candidalysin-induced damage. Sulfated glycosaminoglycans are host cell targets of candidalysin, a cytolytic toxin of the fungal pathogen Candida albicans.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"9 10","pages":"2553-2569"},"PeriodicalIF":20.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfated glycosaminoglycans are host epithelial cell targets of the Candida albicans toxin candidalysin\",\"authors\":\"Jianfeng Lin, Jian Miao, Katherine G. Schaefer, Charles M. Russell, Robert J. Pyron, Fuming Zhang, Quynh T. Phan, Norma V. Solis, Hong Liu, Masato Tashiro, Jonathan S. Dordick, Robert J. Linhardt, Michael R. Yeaman, Gavin M. King, Francisco N. Barrera, Brian M. Peters, Scott G. Filler\",\"doi\":\"10.1038/s41564-024-01794-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Candidalysin, a cytolytic peptide produced by the fungal pathogen Candida albicans, is a key virulence factor. However, its host cell targets remain elusive. Here we performed a genome-wide loss-of-function CRISPR screen in the TR146 human oral epithelial cell line and identified that disruption of genes (XYLT2, B3GALT6 and B3GAT3) in glycosaminoglycan (GAG) biosynthesis conferred resistance to damage induced by candidalysin and live C. albicans. Surface plasmon resonance and atomic force and electron microscopy indicated that candidalysin binds to sulfated GAGs, facilitating its enrichment on the host cell surface. Adding exogenous sulfated GAGs or the analogue dextran sulfate protected cells against candidalysin-induced damage. Dextran sulfate also inhibited C. albicans invasion and fungal-induced epithelial cell cytokine production. In mice with vulvovaginal candidiasis, topical dextran sulfate administration reduced intravaginal tissue damage and inflammation. Collectively, sulfated GAGs are epithelial cell targets of candidalysin and can be used therapeutically to protect cells from candidalysin-induced damage. Sulfated glycosaminoglycans are host cell targets of candidalysin, a cytolytic toxin of the fungal pathogen Candida albicans.\",\"PeriodicalId\":18992,\"journal\":{\"name\":\"Nature Microbiology\",\"volume\":\"9 10\",\"pages\":\"2553-2569\"},\"PeriodicalIF\":20.5000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41564-024-01794-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41564-024-01794-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Sulfated glycosaminoglycans are host epithelial cell targets of the Candida albicans toxin candidalysin
Candidalysin, a cytolytic peptide produced by the fungal pathogen Candida albicans, is a key virulence factor. However, its host cell targets remain elusive. Here we performed a genome-wide loss-of-function CRISPR screen in the TR146 human oral epithelial cell line and identified that disruption of genes (XYLT2, B3GALT6 and B3GAT3) in glycosaminoglycan (GAG) biosynthesis conferred resistance to damage induced by candidalysin and live C. albicans. Surface plasmon resonance and atomic force and electron microscopy indicated that candidalysin binds to sulfated GAGs, facilitating its enrichment on the host cell surface. Adding exogenous sulfated GAGs or the analogue dextran sulfate protected cells against candidalysin-induced damage. Dextran sulfate also inhibited C. albicans invasion and fungal-induced epithelial cell cytokine production. In mice with vulvovaginal candidiasis, topical dextran sulfate administration reduced intravaginal tissue damage and inflammation. Collectively, sulfated GAGs are epithelial cell targets of candidalysin and can be used therapeutically to protect cells from candidalysin-induced damage. Sulfated glycosaminoglycans are host cell targets of candidalysin, a cytolytic toxin of the fungal pathogen Candida albicans.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.