用于可控生物合成的可编程多功能生物分子凝聚物的全新工程学

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Wenwen Yu, Ke Jin, Dandan Wang, Nankai Wang, Yangyang Li, Yanfeng Liu, Jianghua Li, Guocheng Du, Xueqin Lv, Jian Chen, Rodrigo Ledesma-Amaro, Long Liu
{"title":"用于可控生物合成的可编程多功能生物分子凝聚物的全新工程学","authors":"Wenwen Yu, Ke Jin, Dandan Wang, Nankai Wang, Yangyang Li, Yanfeng Liu, Jianghua Li, Guocheng Du, Xueqin Lv, Jian Chen, Rodrigo Ledesma-Amaro, Long Liu","doi":"10.1038/s41467-024-52411-5","DOIUrl":null,"url":null,"abstract":"<p>There is a growing interest in the creation of engineered condensates formed via liquid–liquid phase separation (LLPS) to exert precise cellular control in prokaryotes. However, de novo design of cellular condensates to control metabolic flux or protein translation remains a challenge. Here, we present a synthetic condensate platform, generated through the incorporation of artificial, disordered proteins to realize specific functions in <i>Bacillus subtilis</i>. To achieve this, the “stacking blocks” strategy is developed to rationally design a series of LLPS-promoting proteins for programming condensates. Through the targeted recruitment of biomolecules, our investigation demonstrates that cellular condensates effectively sequester biosynthetic pathways. We successfully harness this capability to enhance the biosynthesis of 2’-fucosyllactose by 123.3%. Furthermore, we find that condensates can enhance the translation specificity of tailored enzyme fourfold, and can increase <i>N</i>-acetylmannosamine titer by 75.0%. Collectively, these results lay the foundation for the design of engineered condensates endowed with multifunctional capacities.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"De novo engineering of programmable and multi-functional biomolecular condensates for controlled biosynthesis\",\"authors\":\"Wenwen Yu, Ke Jin, Dandan Wang, Nankai Wang, Yangyang Li, Yanfeng Liu, Jianghua Li, Guocheng Du, Xueqin Lv, Jian Chen, Rodrigo Ledesma-Amaro, Long Liu\",\"doi\":\"10.1038/s41467-024-52411-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is a growing interest in the creation of engineered condensates formed via liquid–liquid phase separation (LLPS) to exert precise cellular control in prokaryotes. However, de novo design of cellular condensates to control metabolic flux or protein translation remains a challenge. Here, we present a synthetic condensate platform, generated through the incorporation of artificial, disordered proteins to realize specific functions in <i>Bacillus subtilis</i>. To achieve this, the “stacking blocks” strategy is developed to rationally design a series of LLPS-promoting proteins for programming condensates. Through the targeted recruitment of biomolecules, our investigation demonstrates that cellular condensates effectively sequester biosynthetic pathways. We successfully harness this capability to enhance the biosynthesis of 2’-fucosyllactose by 123.3%. Furthermore, we find that condensates can enhance the translation specificity of tailored enzyme fourfold, and can increase <i>N</i>-acetylmannosamine titer by 75.0%. Collectively, these results lay the foundation for the design of engineered condensates endowed with multifunctional capacities.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-52411-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52411-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人们对通过液-液相分离(LLPS)创造工程凝结物以在原核生物中实现精确的细胞控制越来越感兴趣。然而,从头设计细胞凝聚物以控制代谢通量或蛋白质翻译仍然是一项挑战。在这里,我们展示了一个合成凝结物平台,它是通过加入人工无序蛋白生成的,以实现枯草芽孢杆菌的特定功能。为了实现这一目标,我们开发了 "堆叠积木 "策略,以合理地设计一系列 LLPS 促进蛋白来编程凝集物。通过有针对性地招募生物分子,我们的研究表明细胞凝聚物能有效地封闭生物合成途径。我们成功地利用这种能力将 2'-flucosyllactose 的生物合成提高了 123.3%。此外,我们还发现缩聚物能将定制酶的翻译特异性提高四倍,并能将 N-乙酰甘露糖胺滴度提高 75.0%。总之,这些结果为设计具有多功能能力的工程凝缩物奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

De novo engineering of programmable and multi-functional biomolecular condensates for controlled biosynthesis

De novo engineering of programmable and multi-functional biomolecular condensates for controlled biosynthesis

There is a growing interest in the creation of engineered condensates formed via liquid–liquid phase separation (LLPS) to exert precise cellular control in prokaryotes. However, de novo design of cellular condensates to control metabolic flux or protein translation remains a challenge. Here, we present a synthetic condensate platform, generated through the incorporation of artificial, disordered proteins to realize specific functions in Bacillus subtilis. To achieve this, the “stacking blocks” strategy is developed to rationally design a series of LLPS-promoting proteins for programming condensates. Through the targeted recruitment of biomolecules, our investigation demonstrates that cellular condensates effectively sequester biosynthetic pathways. We successfully harness this capability to enhance the biosynthesis of 2’-fucosyllactose by 123.3%. Furthermore, we find that condensates can enhance the translation specificity of tailored enzyme fourfold, and can increase N-acetylmannosamine titer by 75.0%. Collectively, these results lay the foundation for the design of engineered condensates endowed with multifunctional capacities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信