双碳辅助氧空位工程优化锰(III)位,提高锌-空气电池性能

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Benji Zhou, Nengneng Xu, Tuo Lu, Yongxia Wang, Shuaifeng Lou, Dongqing Cai, Liangcai Wu, Woochul Yang, Guicheng Liu, Joong Kee Lee, Jinli Qiao
{"title":"双碳辅助氧空位工程优化锰(III)位,提高锌-空气电池性能","authors":"Benji Zhou, Nengneng Xu, Tuo Lu, Yongxia Wang, Shuaifeng Lou, Dongqing Cai, Liangcai Wu, Woochul Yang, Guicheng Liu, Joong Kee Lee, Jinli Qiao","doi":"10.1002/adfm.202414269","DOIUrl":null,"url":null,"abstract":"Owing to kinetic-sluggish nature of electrocatalytic oxygen transformation processes, it is pivotal to develop durable and efficient bifunctional air electrode catalysts for fabricating high-performance Zn–air batteries (ZABs). In this work, oxygen vacancy (Ov) induced Mn(III) sites optimization is achieved via nano-micro structure modulation. Protonated carbon nitride (p-C<sub>3</sub>N<sub>4</sub>) is applied as a structure-stiffening module to immobilize α-MnO<sub>2</sub> on N/P-doped active carbon (NPAC) and induce Ov construction. X-ray adsorption spectra (XAS) disclose the formation of Ov and Mn(III) sites in MCC, the unit coordination structure is well maintained with the aid of a dual-carbon strategy. Mn(III) sites efficiently catalyze oxygen reduction/evolution reaction (ORR/OER), MCC shows high half-wave potential (<i>E</i><sub>1/2</sub>) of 0.88 V for ORR and low potential at 10 mA cm<sup>−2</sup> (<i>E</i><sub>j = 10</sub>) of 1.64 V for OER. According to density functional theory (DFT) simulations analysis, the gorgeous bifunctional activity is owing to that optimized charge distribution facilitates the intermediates transformation. Aqueous ZABs based on MCC manifests high peak power density of 452 mW cm<sup>−2</sup> and durable cycling stability of 1640 h. Quasi-solid-state ZABs based on MCC also show satisfactory performances (175 mW cm<sup>−2</sup>, 105 h). This work provides the route to develop efficient and durable electrocatalyst for constructing ZABs with long lifespan and high-power-density.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Carbon Assisted Oxygen Vacancy Engineering for Optimizing Mn(III) Sites to Enhance Zn–air Battery Performances\",\"authors\":\"Benji Zhou, Nengneng Xu, Tuo Lu, Yongxia Wang, Shuaifeng Lou, Dongqing Cai, Liangcai Wu, Woochul Yang, Guicheng Liu, Joong Kee Lee, Jinli Qiao\",\"doi\":\"10.1002/adfm.202414269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to kinetic-sluggish nature of electrocatalytic oxygen transformation processes, it is pivotal to develop durable and efficient bifunctional air electrode catalysts for fabricating high-performance Zn–air batteries (ZABs). In this work, oxygen vacancy (Ov) induced Mn(III) sites optimization is achieved via nano-micro structure modulation. Protonated carbon nitride (p-C<sub>3</sub>N<sub>4</sub>) is applied as a structure-stiffening module to immobilize α-MnO<sub>2</sub> on N/P-doped active carbon (NPAC) and induce Ov construction. X-ray adsorption spectra (XAS) disclose the formation of Ov and Mn(III) sites in MCC, the unit coordination structure is well maintained with the aid of a dual-carbon strategy. Mn(III) sites efficiently catalyze oxygen reduction/evolution reaction (ORR/OER), MCC shows high half-wave potential (<i>E</i><sub>1/2</sub>) of 0.88 V for ORR and low potential at 10 mA cm<sup>−2</sup> (<i>E</i><sub>j = 10</sub>) of 1.64 V for OER. According to density functional theory (DFT) simulations analysis, the gorgeous bifunctional activity is owing to that optimized charge distribution facilitates the intermediates transformation. Aqueous ZABs based on MCC manifests high peak power density of 452 mW cm<sup>−2</sup> and durable cycling stability of 1640 h. Quasi-solid-state ZABs based on MCC also show satisfactory performances (175 mW cm<sup>−2</sup>, 105 h). This work provides the route to develop efficient and durable electrocatalyst for constructing ZABs with long lifespan and high-power-density.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202414269\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202414269","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于电催化氧转化过程具有动力学缓慢的特点,因此开发持久高效的双功能空气电极催化剂对于制造高性能锌-空气电池(ZABs)至关重要。在这项工作中,通过纳米微结构调制实现了氧空位(Ov)诱导的锰(III)位点优化。质子化氮化碳(p-C3N4)被用作结构加固模块,以固定 N/P 掺杂活性碳(NPAC)上的 α-MnO2,并诱导 Ov 构建。X 射线吸附光谱(XAS)显示,在 MCC 中形成了 Ov 和 Mn(III)位点,借助双碳策略,单元配位结构得到了很好的保持。锰(III)位点能有效催化氧还原/进化反应(ORR/OER),MCC 在 ORR 反应中显示出 0.88 V 的高半波电位(E1/2),而在 10 mA cm-2 时(Ej = 10)则显示出 1.64 V 的低电位(OER)。根据密度泛函理论(DFT)模拟分析,华丽的双功能活性是由于优化的电荷分布促进了中间产物的转化。基于 MCC 的水基 ZABs 表现出 452 mW cm-2 的高峰值功率密度和 1640 h 的持久循环稳定性;基于 MCC 的准固态 ZABs 也表现出令人满意的性能(175 mW cm-2, 105 h)。这项工作为开发高效、耐用的电催化剂提供了途径,可用于构建长寿命、高功率密度的 ZAB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual-Carbon Assisted Oxygen Vacancy Engineering for Optimizing Mn(III) Sites to Enhance Zn–air Battery Performances

Dual-Carbon Assisted Oxygen Vacancy Engineering for Optimizing Mn(III) Sites to Enhance Zn–air Battery Performances
Owing to kinetic-sluggish nature of electrocatalytic oxygen transformation processes, it is pivotal to develop durable and efficient bifunctional air electrode catalysts for fabricating high-performance Zn–air batteries (ZABs). In this work, oxygen vacancy (Ov) induced Mn(III) sites optimization is achieved via nano-micro structure modulation. Protonated carbon nitride (p-C3N4) is applied as a structure-stiffening module to immobilize α-MnO2 on N/P-doped active carbon (NPAC) and induce Ov construction. X-ray adsorption spectra (XAS) disclose the formation of Ov and Mn(III) sites in MCC, the unit coordination structure is well maintained with the aid of a dual-carbon strategy. Mn(III) sites efficiently catalyze oxygen reduction/evolution reaction (ORR/OER), MCC shows high half-wave potential (E1/2) of 0.88 V for ORR and low potential at 10 mA cm−2 (Ej = 10) of 1.64 V for OER. According to density functional theory (DFT) simulations analysis, the gorgeous bifunctional activity is owing to that optimized charge distribution facilitates the intermediates transformation. Aqueous ZABs based on MCC manifests high peak power density of 452 mW cm−2 and durable cycling stability of 1640 h. Quasi-solid-state ZABs based on MCC also show satisfactory performances (175 mW cm−2, 105 h). This work provides the route to develop efficient and durable electrocatalyst for constructing ZABs with long lifespan and high-power-density.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信