使用负载钴的 MXene 催化剂加强活性染料废水的降解和回收利用

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Dawu Shu, Xinqi Zhang, Bo Han, Wanxin Li, Bingxin Wang, Chengshu Xu
{"title":"使用负载钴的 MXene 催化剂加强活性染料废水的降解和回收利用","authors":"Dawu Shu, Xinqi Zhang, Bo Han, Wanxin Li, Bingxin Wang, Chengshu Xu","doi":"10.1038/s41545-024-00391-w","DOIUrl":null,"url":null,"abstract":"Cobalt-based catalysts were synthesized using the molten metal salt method and applied for the degradation of reactive dyeing wastewater. The results demonstrated a degradation of 97.1% for the C.I. Reactive Red 195 solution under the following conditions: 1.0 g/L of Co@MXene, 3 g/L of peroxymonosulfate (PMS), treated at 25 oC for 36 min with initial pH of 7. After adding 20 g/L of NaCl, the dye degradation rate increased to 5.57 times compared to the original rate 0.0894 min−1, but the difference in final degradation was not significant. The enhanced degradation was attributed to the combined action of hydroxyl radicals (•OH), sulfate radicals (SO4•−), and singlet oxygen (1O2). Notably, the Co@MXene catalyst maintained a high dye degradation percentage of 93.5% even after being recycled ten times. The treated dye residue can be recycled for dyeing cotton fabrics with reactive dyes. This study achieves rapid treatment of dye wastewater with wide applicability and provides valuable insights into dye wastewater treatment and environmental remediation.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-10"},"PeriodicalIF":10.4000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00391-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced degradation and recycling of reactive dye wastewater using cobalt loaded MXene catalysts\",\"authors\":\"Dawu Shu, Xinqi Zhang, Bo Han, Wanxin Li, Bingxin Wang, Chengshu Xu\",\"doi\":\"10.1038/s41545-024-00391-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cobalt-based catalysts were synthesized using the molten metal salt method and applied for the degradation of reactive dyeing wastewater. The results demonstrated a degradation of 97.1% for the C.I. Reactive Red 195 solution under the following conditions: 1.0 g/L of Co@MXene, 3 g/L of peroxymonosulfate (PMS), treated at 25 oC for 36 min with initial pH of 7. After adding 20 g/L of NaCl, the dye degradation rate increased to 5.57 times compared to the original rate 0.0894 min−1, but the difference in final degradation was not significant. The enhanced degradation was attributed to the combined action of hydroxyl radicals (•OH), sulfate radicals (SO4•−), and singlet oxygen (1O2). Notably, the Co@MXene catalyst maintained a high dye degradation percentage of 93.5% even after being recycled ten times. The treated dye residue can be recycled for dyeing cotton fabrics with reactive dyes. This study achieves rapid treatment of dye wastewater with wide applicability and provides valuable insights into dye wastewater treatment and environmental remediation.\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41545-024-00391-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41545-024-00391-w\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00391-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用熔融金属盐法合成了钴基催化剂,并将其用于活性染料废水的降解。结果表明,在以下条件下,C.I. 活性红 195 溶液的降解率为 97.1%:在加入 20 克/升 NaCl 后,染料降解率比原来的 0.0894 min-1 提高了 5.57 倍,但最终降解率的差异并不显著。降解增强的原因是羟基自由基(-OH)、硫酸根自由基(SO4--)和单线态氧(1O2)的共同作用。值得注意的是,Co@MXene 催化剂在循环使用十次后仍能保持 93.5% 的高染料降解率。处理后的染料残渣可回收用于活性染料棉织物的染色。这项研究实现了染料废水的快速处理,具有广泛的适用性,为染料废水处理和环境修复提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced degradation and recycling of reactive dye wastewater using cobalt loaded MXene catalysts

Enhanced degradation and recycling of reactive dye wastewater using cobalt loaded MXene catalysts
Cobalt-based catalysts were synthesized using the molten metal salt method and applied for the degradation of reactive dyeing wastewater. The results demonstrated a degradation of 97.1% for the C.I. Reactive Red 195 solution under the following conditions: 1.0 g/L of Co@MXene, 3 g/L of peroxymonosulfate (PMS), treated at 25 oC for 36 min with initial pH of 7. After adding 20 g/L of NaCl, the dye degradation rate increased to 5.57 times compared to the original rate 0.0894 min−1, but the difference in final degradation was not significant. The enhanced degradation was attributed to the combined action of hydroxyl radicals (•OH), sulfate radicals (SO4•−), and singlet oxygen (1O2). Notably, the Co@MXene catalyst maintained a high dye degradation percentage of 93.5% even after being recycled ten times. The treated dye residue can be recycled for dyeing cotton fabrics with reactive dyes. This study achieves rapid treatment of dye wastewater with wide applicability and provides valuable insights into dye wastewater treatment and environmental remediation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信