Jayraj V. Vaghasiya, Keval K. Sonigara, Carmen C. Mayorga-Martinez, Martin Pumera
{"title":"基于 Ti3C2@Polymer 的 3D 打印人工林,用于自主集水系统","authors":"Jayraj V. Vaghasiya, Keval K. Sonigara, Carmen C. Mayorga-Martinez, Martin Pumera","doi":"10.1038/s41545-024-00384-9","DOIUrl":null,"url":null,"abstract":"The escalating scarcity of freshwater resources presents significant challenges to global sustainability, demanding innovative solutions by integrating cutting-edge materials and technologies. Here we introduce an autonomous artificial forest (3D AF) for continuous freshwater acquisition. This system features a three-dimensional (3D) architecture incorporating a carbon nanofiber (CNF) network and MXene@polypyrrole (Ti3C2@PPy), enhancing surface area, light absorption, heat distribution, and surface wettability to improve solar vapor generation and fog collection efficiency. The autonomous operation is facilitated by an integrated photothermal actuator that adjusts to the day and night conditions. During daylight, the 3D AF tilts downward to maximize solar exposure for water evaporation, while at night, it self-adjusts to optimize fog particle collection. Notably, our device demonstrates the ability to harvest over 5.5 L m−2 of freshwater daily outdoors. This study showcases the potential of integrating advanced materials and technologies to address pressing global freshwater challenges, paving the way for future innovations in water harvesting.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-12"},"PeriodicalIF":10.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00384-9.pdf","citationCount":"0","resultStr":"{\"title\":\"3D printed Ti3C2@Polymer based artificial forest for autonomous water harvesting system\",\"authors\":\"Jayraj V. Vaghasiya, Keval K. Sonigara, Carmen C. Mayorga-Martinez, Martin Pumera\",\"doi\":\"10.1038/s41545-024-00384-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The escalating scarcity of freshwater resources presents significant challenges to global sustainability, demanding innovative solutions by integrating cutting-edge materials and technologies. Here we introduce an autonomous artificial forest (3D AF) for continuous freshwater acquisition. This system features a three-dimensional (3D) architecture incorporating a carbon nanofiber (CNF) network and MXene@polypyrrole (Ti3C2@PPy), enhancing surface area, light absorption, heat distribution, and surface wettability to improve solar vapor generation and fog collection efficiency. The autonomous operation is facilitated by an integrated photothermal actuator that adjusts to the day and night conditions. During daylight, the 3D AF tilts downward to maximize solar exposure for water evaporation, while at night, it self-adjusts to optimize fog particle collection. Notably, our device demonstrates the ability to harvest over 5.5 L m−2 of freshwater daily outdoors. This study showcases the potential of integrating advanced materials and technologies to address pressing global freshwater challenges, paving the way for future innovations in water harvesting.\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41545-024-00384-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41545-024-00384-9\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00384-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
淡水资源的日益稀缺给全球可持续发展带来了重大挑战,需要通过整合尖端材料和技术来找到创新的解决方案。在此,我们介绍一种用于连续淡水采集的自主人工林(3D AF)。该系统采用三维(3D)结构,结合了碳纳米纤维(CNF)网络和 MXene@polypyrrole (Ti3C2@PPy),增强了表面积、光吸收、热分布和表面润湿性,从而提高了太阳蒸汽生成和雾气收集效率。集成的光热致动器可根据昼夜条件进行调整,从而促进自主运行。白天,3D AF 向下倾斜,以最大限度地利用太阳光进行水蒸发,而到了晚上,它会进行自我调整,以优化雾粒收集。值得注意的是,我们的设备展示了每天在户外收集超过 5.5 升 m-2 淡水的能力。这项研究展示了整合先进材料和技术以应对全球紧迫的淡水挑战的潜力,为未来集水领域的创新铺平了道路。
3D printed Ti3C2@Polymer based artificial forest for autonomous water harvesting system
The escalating scarcity of freshwater resources presents significant challenges to global sustainability, demanding innovative solutions by integrating cutting-edge materials and technologies. Here we introduce an autonomous artificial forest (3D AF) for continuous freshwater acquisition. This system features a three-dimensional (3D) architecture incorporating a carbon nanofiber (CNF) network and MXene@polypyrrole (Ti3C2@PPy), enhancing surface area, light absorption, heat distribution, and surface wettability to improve solar vapor generation and fog collection efficiency. The autonomous operation is facilitated by an integrated photothermal actuator that adjusts to the day and night conditions. During daylight, the 3D AF tilts downward to maximize solar exposure for water evaporation, while at night, it self-adjusts to optimize fog particle collection. Notably, our device demonstrates the ability to harvest over 5.5 L m−2 of freshwater daily outdoors. This study showcases the potential of integrating advanced materials and technologies to address pressing global freshwater challenges, paving the way for future innovations in water harvesting.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.