{"title":"综合夜间照明和 POI 数据估算不同工业类别的碳排放量--黄河流域案例研究","authors":"","doi":"10.1016/j.jenvman.2024.122418","DOIUrl":null,"url":null,"abstract":"<div><p>Global industrial activities contribute significantly to carbon emissions, impacting climate change and necessitating innovative methods for precise emission monitoring and management at both regional and international levels. Based on nighttime light data, POI data, land use data and energy statistics, this study calculated the carbon emissions of different industrial categories in the Yellow River Basin from 2005 to 2020 and analyzed the temporal and spatial characteristics of their changes to reveal the carbon emission patterns of different industrial categories in the basin. This study analyzes the carbon emissions of various industrial categories from a spatial perspective, addressing the limitations of traditional industrial carbon emission assessments at the spatial scale. The results showed that although the growth rate of industrial carbon emissions in the Yellow River Basin has slowed down significantly, it has not yet reached the peak, with the carbon emissions increasing from 400,0647t in 2005 to 519,216,200t in 2020. The mechanical and electronic manufacturing industry had the largest carbon emissions, which accounting for 37.08% of the total carbon emissions. Medical pharmaceuticals had the fewest, only accounting for 1.16% of the total carbon emissions. The spatial distribution of carbon emissions showed a cluster distribution, and the emissions gradually decrease from the center to the periphery. In addition, the carbon emissions of the construction industry, medical pharmaceutical industry and mechanical and electronic manufacturing industry were concentrated in and around the cites, and were closely related to urban development, infrastructure and technological progress. Furthermore, the study reveals that the relationship between carbon emissions and population structure across different industrial categories is complex. A stable relationship exists between carbon emissions and the population within the mechanical and electronic manufacturing, metallurgy, and chemical industries. However, for the clothing, furniture, and pharmaceutical industries, population is not the sole influencing factor on their carbon emissions. This study provides a new perspective on low-carbon green and sustainable development strategies for industrial carbon emissions in the Yellow River Basin, and emphasizes the importance of constructing detailed, diversified and innovative management strategies in the face of climate change challenges.</p></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of carbon emissions from different industrial categories integrated nighttime light and POI data—A case study in the Yellow River Basin\",\"authors\":\"\",\"doi\":\"10.1016/j.jenvman.2024.122418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Global industrial activities contribute significantly to carbon emissions, impacting climate change and necessitating innovative methods for precise emission monitoring and management at both regional and international levels. Based on nighttime light data, POI data, land use data and energy statistics, this study calculated the carbon emissions of different industrial categories in the Yellow River Basin from 2005 to 2020 and analyzed the temporal and spatial characteristics of their changes to reveal the carbon emission patterns of different industrial categories in the basin. This study analyzes the carbon emissions of various industrial categories from a spatial perspective, addressing the limitations of traditional industrial carbon emission assessments at the spatial scale. The results showed that although the growth rate of industrial carbon emissions in the Yellow River Basin has slowed down significantly, it has not yet reached the peak, with the carbon emissions increasing from 400,0647t in 2005 to 519,216,200t in 2020. The mechanical and electronic manufacturing industry had the largest carbon emissions, which accounting for 37.08% of the total carbon emissions. Medical pharmaceuticals had the fewest, only accounting for 1.16% of the total carbon emissions. The spatial distribution of carbon emissions showed a cluster distribution, and the emissions gradually decrease from the center to the periphery. In addition, the carbon emissions of the construction industry, medical pharmaceutical industry and mechanical and electronic manufacturing industry were concentrated in and around the cites, and were closely related to urban development, infrastructure and technological progress. Furthermore, the study reveals that the relationship between carbon emissions and population structure across different industrial categories is complex. A stable relationship exists between carbon emissions and the population within the mechanical and electronic manufacturing, metallurgy, and chemical industries. However, for the clothing, furniture, and pharmaceutical industries, population is not the sole influencing factor on their carbon emissions. This study provides a new perspective on low-carbon green and sustainable development strategies for industrial carbon emissions in the Yellow River Basin, and emphasizes the importance of constructing detailed, diversified and innovative management strategies in the face of climate change challenges.</p></div>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301479724024046\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479724024046","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Estimation of carbon emissions from different industrial categories integrated nighttime light and POI data—A case study in the Yellow River Basin
Global industrial activities contribute significantly to carbon emissions, impacting climate change and necessitating innovative methods for precise emission monitoring and management at both regional and international levels. Based on nighttime light data, POI data, land use data and energy statistics, this study calculated the carbon emissions of different industrial categories in the Yellow River Basin from 2005 to 2020 and analyzed the temporal and spatial characteristics of their changes to reveal the carbon emission patterns of different industrial categories in the basin. This study analyzes the carbon emissions of various industrial categories from a spatial perspective, addressing the limitations of traditional industrial carbon emission assessments at the spatial scale. The results showed that although the growth rate of industrial carbon emissions in the Yellow River Basin has slowed down significantly, it has not yet reached the peak, with the carbon emissions increasing from 400,0647t in 2005 to 519,216,200t in 2020. The mechanical and electronic manufacturing industry had the largest carbon emissions, which accounting for 37.08% of the total carbon emissions. Medical pharmaceuticals had the fewest, only accounting for 1.16% of the total carbon emissions. The spatial distribution of carbon emissions showed a cluster distribution, and the emissions gradually decrease from the center to the periphery. In addition, the carbon emissions of the construction industry, medical pharmaceutical industry and mechanical and electronic manufacturing industry were concentrated in and around the cites, and were closely related to urban development, infrastructure and technological progress. Furthermore, the study reveals that the relationship between carbon emissions and population structure across different industrial categories is complex. A stable relationship exists between carbon emissions and the population within the mechanical and electronic manufacturing, metallurgy, and chemical industries. However, for the clothing, furniture, and pharmaceutical industries, population is not the sole influencing factor on their carbon emissions. This study provides a new perspective on low-carbon green and sustainable development strategies for industrial carbon emissions in the Yellow River Basin, and emphasizes the importance of constructing detailed, diversified and innovative management strategies in the face of climate change challenges.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.