C. Yang, B. Liu, L.L. Pan, Y. Yang, Y. Zhou, W.S. Cai, Le-hua. Liu
{"title":"打破激光粉末床熔化中的变体选择记忆效应,提高 Ti-6Al-4V 合金的强度-电导率协同效应","authors":"C. Yang, B. Liu, L.L. Pan, Y. Yang, Y. Zhou, W.S. Cai, Le-hua. Liu","doi":"10.1016/j.jmst.2024.08.046","DOIUrl":null,"url":null,"abstract":"<p>Texture formation is frequently observed in parts produced by Laser Powder Bed Fusion (L-PBF), which can induce anisotropy and may potentially degrade plasticity. In this study, we introduce a laser remelting strategy to mitigate these adverse effects. By employing experimental observations and numerical simulations, we established the relationship between melt pool thermal history, variant selection, and mechanical properties. Our results indicate that the strengthening of texture can be prevented by disrupting the variant selection memory effect when there is a difference in scanning speeds between the printing and remelting lasers. The achieved random variant orientation is attributed to the altered cooling rates and temperature gradient directions during solidification across different layers. The optimized Ti-6Al-4V alloy demonstrates high strength (1211.5 ± 13 MPa) and significant elongation (12.3% ± 0.8%), exhibiting a superior strength-ductility synergy compared to samples produced by direct printing or laser remelting with consistent parameters, as well as most reported L-PBF processed Ti-6Al-4V alloys. Our findings provide new insights into phase transformation kinetics in L-PBF of Ti-6Al-4V alloys and facilitate the optimization of this process for manufacturing high-performance components.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disrupting variant selection memory effect in laser powder bed fusion to improve strength-ductility synergy of Ti-6Al-4V alloys\",\"authors\":\"C. Yang, B. Liu, L.L. Pan, Y. Yang, Y. Zhou, W.S. Cai, Le-hua. Liu\",\"doi\":\"10.1016/j.jmst.2024.08.046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Texture formation is frequently observed in parts produced by Laser Powder Bed Fusion (L-PBF), which can induce anisotropy and may potentially degrade plasticity. In this study, we introduce a laser remelting strategy to mitigate these adverse effects. By employing experimental observations and numerical simulations, we established the relationship between melt pool thermal history, variant selection, and mechanical properties. Our results indicate that the strengthening of texture can be prevented by disrupting the variant selection memory effect when there is a difference in scanning speeds between the printing and remelting lasers. The achieved random variant orientation is attributed to the altered cooling rates and temperature gradient directions during solidification across different layers. The optimized Ti-6Al-4V alloy demonstrates high strength (1211.5 ± 13 MPa) and significant elongation (12.3% ± 0.8%), exhibiting a superior strength-ductility synergy compared to samples produced by direct printing or laser remelting with consistent parameters, as well as most reported L-PBF processed Ti-6Al-4V alloys. Our findings provide new insights into phase transformation kinetics in L-PBF of Ti-6Al-4V alloys and facilitate the optimization of this process for manufacturing high-performance components.</p>\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.08.046\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.08.046","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Disrupting variant selection memory effect in laser powder bed fusion to improve strength-ductility synergy of Ti-6Al-4V alloys
Texture formation is frequently observed in parts produced by Laser Powder Bed Fusion (L-PBF), which can induce anisotropy and may potentially degrade plasticity. In this study, we introduce a laser remelting strategy to mitigate these adverse effects. By employing experimental observations and numerical simulations, we established the relationship between melt pool thermal history, variant selection, and mechanical properties. Our results indicate that the strengthening of texture can be prevented by disrupting the variant selection memory effect when there is a difference in scanning speeds between the printing and remelting lasers. The achieved random variant orientation is attributed to the altered cooling rates and temperature gradient directions during solidification across different layers. The optimized Ti-6Al-4V alloy demonstrates high strength (1211.5 ± 13 MPa) and significant elongation (12.3% ± 0.8%), exhibiting a superior strength-ductility synergy compared to samples produced by direct printing or laser remelting with consistent parameters, as well as most reported L-PBF processed Ti-6Al-4V alloys. Our findings provide new insights into phase transformation kinetics in L-PBF of Ti-6Al-4V alloys and facilitate the optimization of this process for manufacturing high-performance components.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.