M. Tatullo, T. Cocco, A. Ferretta, R. Caroppo, B. Marrelli, G. Spagnuolo, F. Paduano
{"title":"通过口腔干细胞揭开神经退行性病变的神秘面纱","authors":"M. Tatullo, T. Cocco, A. Ferretta, R. Caroppo, B. Marrelli, G. Spagnuolo, F. Paduano","doi":"10.1177/00220345241265661","DOIUrl":null,"url":null,"abstract":"Parkinson’s disease (PD) is a neurodegenerative condition characterized by the progressive and selective loss of dopaminergic (DAergic) neurons in the midbrain. The replacement of neuromelanin (NM)–containing DAergic neurons in the substantia nigra and the enhancement of NM concentration could offer a promising and safe approach to treating PD symptoms. The objective of this study was to investigate and compare the potential of human periapical-cysts mesenchymal stem cells (hPCy-MSCs) and dental pulp stem cells (DPSCs) to differentiate into DAergic NM-producing neurons and to generate functional 3-dimensional (3D) midbrain-like organoids in vitro. We assessed the changes in morphology and behavior of neuron-like cells (NLCs) as well as the expression of molecular markers characterizing the DAergic neurons. Furthermore, we observed electrically active and functionally mature DAergic neurons by means of electrophysiological assays, NM dosage assays, and the quantification of dopamine release by high-performance liquid chromatography. Our results demonstrate for the first time that both hPCy-MSCs and DPSCs are capable of differentiating into NLCs, further confirmed by the increase in lactate levels in the medium of cells exposed to neurogenic conditions. Importantly, we have induced such NLCs to further differentiate into functional DAergic NM-producing neurons. Finally, 3D midbrain-like organoids have been produced from oral stem cells: they appear as neurosphere-like structures diffusely expressing the neural marker β-III tubulin and containing NM-like granules. Our findings open up a novel and fascinating opportunity to rethink oral stem cells, and the derived 3D disease models, as a strategic and reliable tool for unveiling the neurodegenerative alterations.","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":"6 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Neurodegenerative Alterations through Oral Stem Cells\",\"authors\":\"M. Tatullo, T. Cocco, A. Ferretta, R. Caroppo, B. Marrelli, G. Spagnuolo, F. Paduano\",\"doi\":\"10.1177/00220345241265661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parkinson’s disease (PD) is a neurodegenerative condition characterized by the progressive and selective loss of dopaminergic (DAergic) neurons in the midbrain. The replacement of neuromelanin (NM)–containing DAergic neurons in the substantia nigra and the enhancement of NM concentration could offer a promising and safe approach to treating PD symptoms. The objective of this study was to investigate and compare the potential of human periapical-cysts mesenchymal stem cells (hPCy-MSCs) and dental pulp stem cells (DPSCs) to differentiate into DAergic NM-producing neurons and to generate functional 3-dimensional (3D) midbrain-like organoids in vitro. We assessed the changes in morphology and behavior of neuron-like cells (NLCs) as well as the expression of molecular markers characterizing the DAergic neurons. Furthermore, we observed electrically active and functionally mature DAergic neurons by means of electrophysiological assays, NM dosage assays, and the quantification of dopamine release by high-performance liquid chromatography. Our results demonstrate for the first time that both hPCy-MSCs and DPSCs are capable of differentiating into NLCs, further confirmed by the increase in lactate levels in the medium of cells exposed to neurogenic conditions. Importantly, we have induced such NLCs to further differentiate into functional DAergic NM-producing neurons. Finally, 3D midbrain-like organoids have been produced from oral stem cells: they appear as neurosphere-like structures diffusely expressing the neural marker β-III tubulin and containing NM-like granules. Our findings open up a novel and fascinating opportunity to rethink oral stem cells, and the derived 3D disease models, as a strategic and reliable tool for unveiling the neurodegenerative alterations.\",\"PeriodicalId\":15596,\"journal\":{\"name\":\"Journal of Dental Research\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dental Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/00220345241265661\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00220345241265661","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Unveiling the Neurodegenerative Alterations through Oral Stem Cells
Parkinson’s disease (PD) is a neurodegenerative condition characterized by the progressive and selective loss of dopaminergic (DAergic) neurons in the midbrain. The replacement of neuromelanin (NM)–containing DAergic neurons in the substantia nigra and the enhancement of NM concentration could offer a promising and safe approach to treating PD symptoms. The objective of this study was to investigate and compare the potential of human periapical-cysts mesenchymal stem cells (hPCy-MSCs) and dental pulp stem cells (DPSCs) to differentiate into DAergic NM-producing neurons and to generate functional 3-dimensional (3D) midbrain-like organoids in vitro. We assessed the changes in morphology and behavior of neuron-like cells (NLCs) as well as the expression of molecular markers characterizing the DAergic neurons. Furthermore, we observed electrically active and functionally mature DAergic neurons by means of electrophysiological assays, NM dosage assays, and the quantification of dopamine release by high-performance liquid chromatography. Our results demonstrate for the first time that both hPCy-MSCs and DPSCs are capable of differentiating into NLCs, further confirmed by the increase in lactate levels in the medium of cells exposed to neurogenic conditions. Importantly, we have induced such NLCs to further differentiate into functional DAergic NM-producing neurons. Finally, 3D midbrain-like organoids have been produced from oral stem cells: they appear as neurosphere-like structures diffusely expressing the neural marker β-III tubulin and containing NM-like granules. Our findings open up a novel and fascinating opportunity to rethink oral stem cells, and the derived 3D disease models, as a strategic and reliable tool for unveiling the neurodegenerative alterations.
期刊介绍:
The Journal of Dental Research (JDR) is a peer-reviewed scientific journal committed to sharing new knowledge and information on all sciences related to dentistry and the oral cavity, covering health and disease. With monthly publications, JDR ensures timely communication of the latest research to the oral and dental community.