通过口腔干细胞揭开神经退行性病变的神秘面纱

IF 5.7 1区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
M. Tatullo, T. Cocco, A. Ferretta, R. Caroppo, B. Marrelli, G. Spagnuolo, F. Paduano
{"title":"通过口腔干细胞揭开神经退行性病变的神秘面纱","authors":"M. Tatullo, T. Cocco, A. Ferretta, R. Caroppo, B. Marrelli, G. Spagnuolo, F. Paduano","doi":"10.1177/00220345241265661","DOIUrl":null,"url":null,"abstract":"Parkinson’s disease (PD) is a neurodegenerative condition characterized by the progressive and selective loss of dopaminergic (DAergic) neurons in the midbrain. The replacement of neuromelanin (NM)–containing DAergic neurons in the substantia nigra and the enhancement of NM concentration could offer a promising and safe approach to treating PD symptoms. The objective of this study was to investigate and compare the potential of human periapical-cysts mesenchymal stem cells (hPCy-MSCs) and dental pulp stem cells (DPSCs) to differentiate into DAergic NM-producing neurons and to generate functional 3-dimensional (3D) midbrain-like organoids in vitro. We assessed the changes in morphology and behavior of neuron-like cells (NLCs) as well as the expression of molecular markers characterizing the DAergic neurons. Furthermore, we observed electrically active and functionally mature DAergic neurons by means of electrophysiological assays, NM dosage assays, and the quantification of dopamine release by high-performance liquid chromatography. Our results demonstrate for the first time that both hPCy-MSCs and DPSCs are capable of differentiating into NLCs, further confirmed by the increase in lactate levels in the medium of cells exposed to neurogenic conditions. Importantly, we have induced such NLCs to further differentiate into functional DAergic NM-producing neurons. Finally, 3D midbrain-like organoids have been produced from oral stem cells: they appear as neurosphere-like structures diffusely expressing the neural marker β-III tubulin and containing NM-like granules. Our findings open up a novel and fascinating opportunity to rethink oral stem cells, and the derived 3D disease models, as a strategic and reliable tool for unveiling the neurodegenerative alterations.","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":"6 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Neurodegenerative Alterations through Oral Stem Cells\",\"authors\":\"M. Tatullo, T. Cocco, A. Ferretta, R. Caroppo, B. Marrelli, G. Spagnuolo, F. Paduano\",\"doi\":\"10.1177/00220345241265661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parkinson’s disease (PD) is a neurodegenerative condition characterized by the progressive and selective loss of dopaminergic (DAergic) neurons in the midbrain. The replacement of neuromelanin (NM)–containing DAergic neurons in the substantia nigra and the enhancement of NM concentration could offer a promising and safe approach to treating PD symptoms. The objective of this study was to investigate and compare the potential of human periapical-cysts mesenchymal stem cells (hPCy-MSCs) and dental pulp stem cells (DPSCs) to differentiate into DAergic NM-producing neurons and to generate functional 3-dimensional (3D) midbrain-like organoids in vitro. We assessed the changes in morphology and behavior of neuron-like cells (NLCs) as well as the expression of molecular markers characterizing the DAergic neurons. Furthermore, we observed electrically active and functionally mature DAergic neurons by means of electrophysiological assays, NM dosage assays, and the quantification of dopamine release by high-performance liquid chromatography. Our results demonstrate for the first time that both hPCy-MSCs and DPSCs are capable of differentiating into NLCs, further confirmed by the increase in lactate levels in the medium of cells exposed to neurogenic conditions. Importantly, we have induced such NLCs to further differentiate into functional DAergic NM-producing neurons. Finally, 3D midbrain-like organoids have been produced from oral stem cells: they appear as neurosphere-like structures diffusely expressing the neural marker β-III tubulin and containing NM-like granules. Our findings open up a novel and fascinating opportunity to rethink oral stem cells, and the derived 3D disease models, as a strategic and reliable tool for unveiling the neurodegenerative alterations.\",\"PeriodicalId\":15596,\"journal\":{\"name\":\"Journal of Dental Research\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dental Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/00220345241265661\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00220345241265661","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)是一种神经退行性疾病,其特征是中脑多巴胺能(DAergic)神经元的进行性和选择性丧失。替换黑质中含有神经髓鞘素(NM)的多巴胺能神经元并提高 NM 的浓度可为治疗帕金森病症状提供一种安全可靠的方法。本研究旨在调查和比较人根尖囊间充质干细胞(hPCy-MSCs)和牙髓干细胞(DPSCs)分化为产生DA能神经元和在体外生成功能性三维(3D)中脑样器官组织的潜力。我们评估了神经元样细胞(NLCs)形态和行为的变化,以及表征DA能神经元的分子标记的表达。此外,我们还通过电生理学实验、NM剂量实验和高效液相色谱法量化多巴胺的释放,观察到了电活性和功能成熟的DA能神经元。我们的研究结果首次证明了 hPCy-MSCs 和 DPSCs 都能分化成 NLCs,暴露于神经源条件下的细胞培养基中乳酸水平的增加进一步证实了这一点。重要的是,我们还诱导了这类 NLCs 进一步分化为功能性 DAergic NM 生产神经元。最后,我们从口腔干细胞中培育出了三维中脑类器官组织:它们呈神经球样结构,弥漫表达神经标记β-III微管蛋白,并含有NM样颗粒。我们的发现为重新思考口腔干细胞和衍生的三维疾病模型提供了一个新颖而迷人的机会,使其成为揭示神经退行性病变的可靠战略工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling the Neurodegenerative Alterations through Oral Stem Cells
Parkinson’s disease (PD) is a neurodegenerative condition characterized by the progressive and selective loss of dopaminergic (DAergic) neurons in the midbrain. The replacement of neuromelanin (NM)–containing DAergic neurons in the substantia nigra and the enhancement of NM concentration could offer a promising and safe approach to treating PD symptoms. The objective of this study was to investigate and compare the potential of human periapical-cysts mesenchymal stem cells (hPCy-MSCs) and dental pulp stem cells (DPSCs) to differentiate into DAergic NM-producing neurons and to generate functional 3-dimensional (3D) midbrain-like organoids in vitro. We assessed the changes in morphology and behavior of neuron-like cells (NLCs) as well as the expression of molecular markers characterizing the DAergic neurons. Furthermore, we observed electrically active and functionally mature DAergic neurons by means of electrophysiological assays, NM dosage assays, and the quantification of dopamine release by high-performance liquid chromatography. Our results demonstrate for the first time that both hPCy-MSCs and DPSCs are capable of differentiating into NLCs, further confirmed by the increase in lactate levels in the medium of cells exposed to neurogenic conditions. Importantly, we have induced such NLCs to further differentiate into functional DAergic NM-producing neurons. Finally, 3D midbrain-like organoids have been produced from oral stem cells: they appear as neurosphere-like structures diffusely expressing the neural marker β-III tubulin and containing NM-like granules. Our findings open up a novel and fascinating opportunity to rethink oral stem cells, and the derived 3D disease models, as a strategic and reliable tool for unveiling the neurodegenerative alterations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Dental Research
Journal of Dental Research 医学-牙科与口腔外科
CiteScore
15.30
自引率
3.90%
发文量
155
审稿时长
3-8 weeks
期刊介绍: The Journal of Dental Research (JDR) is a peer-reviewed scientific journal committed to sharing new knowledge and information on all sciences related to dentistry and the oral cavity, covering health and disease. With monthly publications, JDR ensures timely communication of the latest research to the oral and dental community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信