{"title":"颅面发育和疾病图像分析的计算方法","authors":"E. James, A.J. Caetano, P.T. Sharpe","doi":"10.1177/00220345241265048","DOIUrl":null,"url":null,"abstract":"Observation is at the center of all biological sciences. Advances in imaging technologies are therefore essential to derive novel biological insights to better understand the complex workings of living systems. Recent high-throughput sequencing and imaging techniques are allowing researchers to simultaneously address complex molecular variations spatially and temporarily in tissues and organs. The availability of increasingly large dataset sizes has allowed for the evolution of robust deep learning models, designed to interrogate biomedical imaging data. These models are emerging as transformative tools in diagnostic medicine. Combined, these advances allow for dynamic, quantitative, and predictive observations of entire organisms and tissues. Here, we address 3 main tasks of bioimage analysis, image restoration, segmentation, and tracking and discuss new computational tools allowing for 3-dimensional spatial genomics maps. Finally, we demonstrate how these advances have been applied in studies of craniofacial development and oral disease pathogenesis.","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":"32 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Methods for Image Analysis in Craniofacial Development and Disease\",\"authors\":\"E. James, A.J. Caetano, P.T. Sharpe\",\"doi\":\"10.1177/00220345241265048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Observation is at the center of all biological sciences. Advances in imaging technologies are therefore essential to derive novel biological insights to better understand the complex workings of living systems. Recent high-throughput sequencing and imaging techniques are allowing researchers to simultaneously address complex molecular variations spatially and temporarily in tissues and organs. The availability of increasingly large dataset sizes has allowed for the evolution of robust deep learning models, designed to interrogate biomedical imaging data. These models are emerging as transformative tools in diagnostic medicine. Combined, these advances allow for dynamic, quantitative, and predictive observations of entire organisms and tissues. Here, we address 3 main tasks of bioimage analysis, image restoration, segmentation, and tracking and discuss new computational tools allowing for 3-dimensional spatial genomics maps. Finally, we demonstrate how these advances have been applied in studies of craniofacial development and oral disease pathogenesis.\",\"PeriodicalId\":15596,\"journal\":{\"name\":\"Journal of Dental Research\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dental Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/00220345241265048\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00220345241265048","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Computational Methods for Image Analysis in Craniofacial Development and Disease
Observation is at the center of all biological sciences. Advances in imaging technologies are therefore essential to derive novel biological insights to better understand the complex workings of living systems. Recent high-throughput sequencing and imaging techniques are allowing researchers to simultaneously address complex molecular variations spatially and temporarily in tissues and organs. The availability of increasingly large dataset sizes has allowed for the evolution of robust deep learning models, designed to interrogate biomedical imaging data. These models are emerging as transformative tools in diagnostic medicine. Combined, these advances allow for dynamic, quantitative, and predictive observations of entire organisms and tissues. Here, we address 3 main tasks of bioimage analysis, image restoration, segmentation, and tracking and discuss new computational tools allowing for 3-dimensional spatial genomics maps. Finally, we demonstrate how these advances have been applied in studies of craniofacial development and oral disease pathogenesis.
期刊介绍:
The Journal of Dental Research (JDR) is a peer-reviewed scientific journal committed to sharing new knowledge and information on all sciences related to dentistry and the oral cavity, covering health and disease. With monthly publications, JDR ensures timely communication of the latest research to the oral and dental community.