Kangning Liu, Qi Ding, Doudou Cao, Enpeng Xi, Yun Zhao, Nan Gao, Yajie Yang, Ye Yuan
{"title":"用于治疗阿尔茨海默病的界面电位诱导天然抗氧化剂模拟系统","authors":"Kangning Liu, Qi Ding, Doudou Cao, Enpeng Xi, Yun Zhao, Nan Gao, Yajie Yang, Ye Yuan","doi":"10.1038/s42004-024-01299-9","DOIUrl":null,"url":null,"abstract":"Although the pathogenesis of Alzheimer’s disease (AD) is still unknown, the molecular pathological phenomena is clear, mainly due to mitochondrial dysfunction and central nervous system inflammation caused by imbalanced antioxidant capacity and synaptic dysfunction, so antioxidant therapy is still the preferred treatment for AD. However, although antioxidant enzymes have high catalytic efficiency, the substrate spectrum is narrow; Antioxidants have wider range of effects, but their efficiency is low. Since the antioxidant defense system in high-grade organisms is composed of both enzymatic and non-enzymatic systems, therefore we synthesized a metal-organic framework (MOF) with superoxide dismutase activity, and depending on the interface potential effect, curcumin was loaded to construct a synergistic antioxidant treatment system. More importantly, due to the complementary surface electrostatic potential between MOF and curcumin, the system exhibited both good antioxidant activity and efficient β-amyloid plaque scavenging ability, which slowed down the cognitive dysfunction in the brain of AD mice. Although the pathogenesis of Alzheimer’s disease (AD) is still unknown, imbalanced antioxidant capacity in nerve cells is a successfully targeted pathological phenomenon in clinical practice. Here, the authors show that the complementary surface electrostatic potential between a metal-organic framework and curcumin results in a complex with good antioxidant activity and efficient β-amyloid plaque scavenging ability, which slows down the cognitive dysfunction in the brain of AD mice.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-6"},"PeriodicalIF":5.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01299-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Interface potential-induced natural antioxidant mimic system for the treatment of Alzheimer’s disease\",\"authors\":\"Kangning Liu, Qi Ding, Doudou Cao, Enpeng Xi, Yun Zhao, Nan Gao, Yajie Yang, Ye Yuan\",\"doi\":\"10.1038/s42004-024-01299-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the pathogenesis of Alzheimer’s disease (AD) is still unknown, the molecular pathological phenomena is clear, mainly due to mitochondrial dysfunction and central nervous system inflammation caused by imbalanced antioxidant capacity and synaptic dysfunction, so antioxidant therapy is still the preferred treatment for AD. However, although antioxidant enzymes have high catalytic efficiency, the substrate spectrum is narrow; Antioxidants have wider range of effects, but their efficiency is low. Since the antioxidant defense system in high-grade organisms is composed of both enzymatic and non-enzymatic systems, therefore we synthesized a metal-organic framework (MOF) with superoxide dismutase activity, and depending on the interface potential effect, curcumin was loaded to construct a synergistic antioxidant treatment system. More importantly, due to the complementary surface electrostatic potential between MOF and curcumin, the system exhibited both good antioxidant activity and efficient β-amyloid plaque scavenging ability, which slowed down the cognitive dysfunction in the brain of AD mice. Although the pathogenesis of Alzheimer’s disease (AD) is still unknown, imbalanced antioxidant capacity in nerve cells is a successfully targeted pathological phenomenon in clinical practice. Here, the authors show that the complementary surface electrostatic potential between a metal-organic framework and curcumin results in a complex with good antioxidant activity and efficient β-amyloid plaque scavenging ability, which slows down the cognitive dysfunction in the brain of AD mice.\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":\" \",\"pages\":\"1-6\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42004-024-01299-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s42004-024-01299-9\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01299-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Interface potential-induced natural antioxidant mimic system for the treatment of Alzheimer’s disease
Although the pathogenesis of Alzheimer’s disease (AD) is still unknown, the molecular pathological phenomena is clear, mainly due to mitochondrial dysfunction and central nervous system inflammation caused by imbalanced antioxidant capacity and synaptic dysfunction, so antioxidant therapy is still the preferred treatment for AD. However, although antioxidant enzymes have high catalytic efficiency, the substrate spectrum is narrow; Antioxidants have wider range of effects, but their efficiency is low. Since the antioxidant defense system in high-grade organisms is composed of both enzymatic and non-enzymatic systems, therefore we synthesized a metal-organic framework (MOF) with superoxide dismutase activity, and depending on the interface potential effect, curcumin was loaded to construct a synergistic antioxidant treatment system. More importantly, due to the complementary surface electrostatic potential between MOF and curcumin, the system exhibited both good antioxidant activity and efficient β-amyloid plaque scavenging ability, which slowed down the cognitive dysfunction in the brain of AD mice. Although the pathogenesis of Alzheimer’s disease (AD) is still unknown, imbalanced antioxidant capacity in nerve cells is a successfully targeted pathological phenomenon in clinical practice. Here, the authors show that the complementary surface electrostatic potential between a metal-organic framework and curcumin results in a complex with good antioxidant activity and efficient β-amyloid plaque scavenging ability, which slows down the cognitive dysfunction in the brain of AD mice.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.