{"title":"DRNet:学习动态递归网络,消除混乱雨痕","authors":"","doi":"10.1016/j.patcog.2024.111004","DOIUrl":null,"url":null,"abstract":"<div><p>Image deraining refers to removing the visible rain streaks to restore the rain-free scenes. Existing methods rely on manually crafted networks to model the distribution of rain streaks. However, complex scenes disrupt the uniformity of rain streak characteristics assumed in ideal conditions, resulting in rain streaks of varying directions, intensities, and brightness intersecting within the same scene, challenging the deep learning based deraining performance. To address the chaotic rain streak removal, we handle the rain streaks with similar distribution characteristics in the same layer and employ a dynamic recursive mechanism to extract and unveil them progressively. Specifically, we employ neural architecture search to determine the models of different rain streaks. To avoid the loss of texture details associated with overly deep structures, we integrate multi-scale modeling and cross-scale recruitment within the dynamic structure. Considering the application of real-world scenes, we incorporate contrastive training to improve the generalization. Experimental results indicate superior performance in rain streak depiction compared to existing methods. Practical evaluation confirms its effectiveness in object detection and semantic segmentation tasks. Code is available at <span><span>https://github.com/Jzy2017/DRNet</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DRNet: Learning a dynamic recursion network for chaotic rain streak removal\",\"authors\":\"\",\"doi\":\"10.1016/j.patcog.2024.111004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Image deraining refers to removing the visible rain streaks to restore the rain-free scenes. Existing methods rely on manually crafted networks to model the distribution of rain streaks. However, complex scenes disrupt the uniformity of rain streak characteristics assumed in ideal conditions, resulting in rain streaks of varying directions, intensities, and brightness intersecting within the same scene, challenging the deep learning based deraining performance. To address the chaotic rain streak removal, we handle the rain streaks with similar distribution characteristics in the same layer and employ a dynamic recursive mechanism to extract and unveil them progressively. Specifically, we employ neural architecture search to determine the models of different rain streaks. To avoid the loss of texture details associated with overly deep structures, we integrate multi-scale modeling and cross-scale recruitment within the dynamic structure. Considering the application of real-world scenes, we incorporate contrastive training to improve the generalization. Experimental results indicate superior performance in rain streak depiction compared to existing methods. Practical evaluation confirms its effectiveness in object detection and semantic segmentation tasks. Code is available at <span><span>https://github.com/Jzy2017/DRNet</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320324007556\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324007556","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
DRNet: Learning a dynamic recursion network for chaotic rain streak removal
Image deraining refers to removing the visible rain streaks to restore the rain-free scenes. Existing methods rely on manually crafted networks to model the distribution of rain streaks. However, complex scenes disrupt the uniformity of rain streak characteristics assumed in ideal conditions, resulting in rain streaks of varying directions, intensities, and brightness intersecting within the same scene, challenging the deep learning based deraining performance. To address the chaotic rain streak removal, we handle the rain streaks with similar distribution characteristics in the same layer and employ a dynamic recursive mechanism to extract and unveil them progressively. Specifically, we employ neural architecture search to determine the models of different rain streaks. To avoid the loss of texture details associated with overly deep structures, we integrate multi-scale modeling and cross-scale recruitment within the dynamic structure. Considering the application of real-world scenes, we incorporate contrastive training to improve the generalization. Experimental results indicate superior performance in rain streak depiction compared to existing methods. Practical evaluation confirms its effectiveness in object detection and semantic segmentation tasks. Code is available at https://github.com/Jzy2017/DRNet.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.