{"title":"弗吉尼亚沿海平原土壤对保护管理的多年反应","authors":"","doi":"10.1016/j.still.2024.106303","DOIUrl":null,"url":null,"abstract":"<div><p>In the coastal plain region of the United States, conservation agriculture practices are being implemented to improve soil health, minimize environmental impacts, and improve farm profitability. Common practices include cover cropping and conservation tillage using strip tillage, minimal tillage, or no tillage. However, the soil response to specific combinations of conservation tillage and cover crop rotations remains poorly quantified. The objective of this research was to evaluate changes in soil properties from different combinations of conservation management. Four tillage systems – conventional, strip, minimal, and no tillage – and three winter cover rotations – fallow, winter cash crop, and high-biomass cover crop – were tested in a split-plot design. Bulk density, depth to a root-restrictive layer, soil carbon concentration, soil carbon stock, field-saturated hydraulic conductivity, and yield were measured over a seven-year period. Bulk density and field-saturated hydraulic conductivity showed greater temporal variation in the strip tillage and conventional tillage practices. Depth to root-restrictive layer was consistently highest in the strip and minimal tillage treatments, which both included implements designed to alleviate subsoil compaction. Treatments that combined conservation tillage with a winter cover (i.e., cash crops or high-biomass cover crops) had greater increases in soil carbon concentrations and carbon stock. Summer cash crop yield was significantly increased following the high-biomass cover crop treatment in 2 out of the 7 years. Altogether, soil carbon showed a more consistent response to conservation management than the other soil properties, which tended to show greater variability based on the time since disturbance (e.g., tillage). Conservation management practices therefore need to be consistently applied for multiple years in order to improve soil properties such as bulk density and saturated hydraulic conductivity.</p></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167198724003040/pdfft?md5=dc20dbab6578c12ba54ee8116d3c25ae&pid=1-s2.0-S0167198724003040-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multi-year soil response to conservation management in the Virginia Coastal Plain\",\"authors\":\"\",\"doi\":\"10.1016/j.still.2024.106303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the coastal plain region of the United States, conservation agriculture practices are being implemented to improve soil health, minimize environmental impacts, and improve farm profitability. Common practices include cover cropping and conservation tillage using strip tillage, minimal tillage, or no tillage. However, the soil response to specific combinations of conservation tillage and cover crop rotations remains poorly quantified. The objective of this research was to evaluate changes in soil properties from different combinations of conservation management. Four tillage systems – conventional, strip, minimal, and no tillage – and three winter cover rotations – fallow, winter cash crop, and high-biomass cover crop – were tested in a split-plot design. Bulk density, depth to a root-restrictive layer, soil carbon concentration, soil carbon stock, field-saturated hydraulic conductivity, and yield were measured over a seven-year period. Bulk density and field-saturated hydraulic conductivity showed greater temporal variation in the strip tillage and conventional tillage practices. Depth to root-restrictive layer was consistently highest in the strip and minimal tillage treatments, which both included implements designed to alleviate subsoil compaction. Treatments that combined conservation tillage with a winter cover (i.e., cash crops or high-biomass cover crops) had greater increases in soil carbon concentrations and carbon stock. Summer cash crop yield was significantly increased following the high-biomass cover crop treatment in 2 out of the 7 years. Altogether, soil carbon showed a more consistent response to conservation management than the other soil properties, which tended to show greater variability based on the time since disturbance (e.g., tillage). Conservation management practices therefore need to be consistently applied for multiple years in order to improve soil properties such as bulk density and saturated hydraulic conductivity.</p></div>\",\"PeriodicalId\":49503,\"journal\":{\"name\":\"Soil & Tillage Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167198724003040/pdfft?md5=dc20dbab6578c12ba54ee8116d3c25ae&pid=1-s2.0-S0167198724003040-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil & Tillage Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167198724003040\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724003040","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Multi-year soil response to conservation management in the Virginia Coastal Plain
In the coastal plain region of the United States, conservation agriculture practices are being implemented to improve soil health, minimize environmental impacts, and improve farm profitability. Common practices include cover cropping and conservation tillage using strip tillage, minimal tillage, or no tillage. However, the soil response to specific combinations of conservation tillage and cover crop rotations remains poorly quantified. The objective of this research was to evaluate changes in soil properties from different combinations of conservation management. Four tillage systems – conventional, strip, minimal, and no tillage – and three winter cover rotations – fallow, winter cash crop, and high-biomass cover crop – were tested in a split-plot design. Bulk density, depth to a root-restrictive layer, soil carbon concentration, soil carbon stock, field-saturated hydraulic conductivity, and yield were measured over a seven-year period. Bulk density and field-saturated hydraulic conductivity showed greater temporal variation in the strip tillage and conventional tillage practices. Depth to root-restrictive layer was consistently highest in the strip and minimal tillage treatments, which both included implements designed to alleviate subsoil compaction. Treatments that combined conservation tillage with a winter cover (i.e., cash crops or high-biomass cover crops) had greater increases in soil carbon concentrations and carbon stock. Summer cash crop yield was significantly increased following the high-biomass cover crop treatment in 2 out of the 7 years. Altogether, soil carbon showed a more consistent response to conservation management than the other soil properties, which tended to show greater variability based on the time since disturbance (e.g., tillage). Conservation management practices therefore need to be consistently applied for multiple years in order to improve soil properties such as bulk density and saturated hydraulic conductivity.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.