将赤铁矿尾矿转化为高纯度二氧化硅:机理研究和生命周期评估分析

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
{"title":"将赤铁矿尾矿转化为高纯度二氧化硅:机理研究和生命周期评估分析","authors":"","doi":"10.1016/j.chemosphere.2024.143335","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to recover high-purity silica from hematite tailings (HTs) using superconducting high-gradient magnetic separation (S-HGMS) technology. This process involved converting silica into a silicone-rich concentrate and subsequently employing a fluorine-free mixed acid to leach the silicon-rich concentrate to remove impurities and achieve refinement and purification. The optimization of the S-HGMS process was conducted using the \"Box-Behnken Design\" method, resulting in the following optimal conditions: a pulp concentration of 50 g/L, a magnetic velocity ratio of 0.076 T s/m, and a pulp velocity of 500 mL/min. These conditions yielded a silica grade range of 61.905% in the HTs to 91.818% in the silicon-rich concentrate, with corresponding recovery rates of 53.031%. Under the optimized leaching process, this resulted in an increase in the silica content from 91.818% in the silicon-rich concentrate to 99.938% in high-purity silica. Additionally, by analyzing the production process of 1 kg of high-purity silica from HTs using the process LCA method, environmental hotspots were identified, and corresponding solutions were proposed. This approach is vital for efficient utilization of HTs as a resource. This process has low energy consumption and is environmentally friendly, enabling the reduction of hematite tailings. It has a wide range of applications and offers substantial economic benefits, rendering it a promising candidate for industrial applications.</p></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hematite tailings to high-purity silica: Mechanistic studies and life cycle assessment analysis\",\"authors\":\"\",\"doi\":\"10.1016/j.chemosphere.2024.143335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aimed to recover high-purity silica from hematite tailings (HTs) using superconducting high-gradient magnetic separation (S-HGMS) technology. This process involved converting silica into a silicone-rich concentrate and subsequently employing a fluorine-free mixed acid to leach the silicon-rich concentrate to remove impurities and achieve refinement and purification. The optimization of the S-HGMS process was conducted using the \\\"Box-Behnken Design\\\" method, resulting in the following optimal conditions: a pulp concentration of 50 g/L, a magnetic velocity ratio of 0.076 T s/m, and a pulp velocity of 500 mL/min. These conditions yielded a silica grade range of 61.905% in the HTs to 91.818% in the silicon-rich concentrate, with corresponding recovery rates of 53.031%. Under the optimized leaching process, this resulted in an increase in the silica content from 91.818% in the silicon-rich concentrate to 99.938% in high-purity silica. Additionally, by analyzing the production process of 1 kg of high-purity silica from HTs using the process LCA method, environmental hotspots were identified, and corresponding solutions were proposed. This approach is vital for efficient utilization of HTs as a resource. This process has low energy consumption and is environmentally friendly, enabling the reduction of hematite tailings. It has a wide range of applications and offers substantial economic benefits, rendering it a promising candidate for industrial applications.</p></div>\",\"PeriodicalId\":276,\"journal\":{\"name\":\"Chemosphere\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045653524022331\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524022331","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

这项研究旨在利用超导高梯度磁选(S-HGMS)技术从赤铁矿尾矿(HTs)中回收高纯度二氧化硅。该工艺包括将二氧化硅转化为富硅精矿,然后使用无氟混合酸浸出富硅精矿,以去除杂质并实现精炼和提纯。采用 "Box-Behnken 设计 "法对 S-HGMS 工艺进行了优化,最终确定了以下最佳条件:矿浆浓度为 50 g/L,磁速比为 0.076 T s/m,矿浆速度为 500 mL/min。在这些条件下,HTs 的二氧化硅品位范围为 61.905%,富硅精矿的品位范围为 91.818%,相应的回收率为 53.031%。在优化的浸出工艺下,二氧化硅含量从富硅精矿的 91.818% 提高到高纯二氧化硅的 99.938%。此外,通过使用过程生命周期评估方法分析 1 千克 HT 高纯二氧化硅的生产过程,发现了环境热点问题,并提出了相应的解决方案。这种方法对于有效利用高温硫酸这种资源至关重要。该工艺能耗低、环保,可减少赤铁矿尾矿。它应用广泛,经济效益可观,是工业应用的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hematite tailings to high-purity silica: Mechanistic studies and life cycle assessment analysis

Hematite tailings to high-purity silica: Mechanistic studies and life cycle assessment analysis

This study aimed to recover high-purity silica from hematite tailings (HTs) using superconducting high-gradient magnetic separation (S-HGMS) technology. This process involved converting silica into a silicone-rich concentrate and subsequently employing a fluorine-free mixed acid to leach the silicon-rich concentrate to remove impurities and achieve refinement and purification. The optimization of the S-HGMS process was conducted using the "Box-Behnken Design" method, resulting in the following optimal conditions: a pulp concentration of 50 g/L, a magnetic velocity ratio of 0.076 T s/m, and a pulp velocity of 500 mL/min. These conditions yielded a silica grade range of 61.905% in the HTs to 91.818% in the silicon-rich concentrate, with corresponding recovery rates of 53.031%. Under the optimized leaching process, this resulted in an increase in the silica content from 91.818% in the silicon-rich concentrate to 99.938% in high-purity silica. Additionally, by analyzing the production process of 1 kg of high-purity silica from HTs using the process LCA method, environmental hotspots were identified, and corresponding solutions were proposed. This approach is vital for efficient utilization of HTs as a resource. This process has low energy consumption and is environmentally friendly, enabling the reduction of hematite tailings. It has a wide range of applications and offers substantial economic benefits, rendering it a promising candidate for industrial applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemosphere
Chemosphere 环境科学-环境科学
CiteScore
15.80
自引率
8.00%
发文量
4975
审稿时长
3.4 months
期刊介绍: Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信