Maria Grazia Martina , Vincent Carlen , Sarah Van der Reysen , Elena Bianchi , Noemi Cabella , Emmanuele Crespan , Marco Radi , Valeria Cagno
{"title":"PI4KB 双噻唑抑制剂对不同病毒科具有广谱抗病毒活性","authors":"Maria Grazia Martina , Vincent Carlen , Sarah Van der Reysen , Elena Bianchi , Noemi Cabella , Emmanuele Crespan , Marco Radi , Valeria Cagno","doi":"10.1016/j.antiviral.2024.106003","DOIUrl":null,"url":null,"abstract":"<div><p>Broad-spectrum antivirals can be extremely important for pandemic preparedness. Targeting host factors dispensable for the host but indispensable for the virus can result in high barrier to resistance and a large range of viruses targeted. PI4KB is a lipid kinase involved in the replication of several RNA viruses, but common inhibitors of this target are mainly active against members of the <em>Picornaviridae</em> family. Herein we describe the optimization of bithiazole PI4KB inhibitors as broad-spectrum antivirals (BSAs) active against different members of the <em>Picornaviridae</em>, <em>Coronaviridae</em>, <em>Flaviviridae</em> and <em>Poxviridae</em> families. Since some of these viruses are transmitted via respiratory route, the efficacy of one of the most promising compounds was evaluated in an airway model. The molecule showed complete viral inhibition and absence of toxicity. These results pave the road for the development of new BSAs.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"231 ","pages":"Article 106003"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166354224002122/pdfft?md5=25a911d3e9f87dcf8a8f784e017ff140&pid=1-s2.0-S0166354224002122-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bithiazole inhibitors of PI4KB show broad-spectrum antiviral activity against different viral families\",\"authors\":\"Maria Grazia Martina , Vincent Carlen , Sarah Van der Reysen , Elena Bianchi , Noemi Cabella , Emmanuele Crespan , Marco Radi , Valeria Cagno\",\"doi\":\"10.1016/j.antiviral.2024.106003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Broad-spectrum antivirals can be extremely important for pandemic preparedness. Targeting host factors dispensable for the host but indispensable for the virus can result in high barrier to resistance and a large range of viruses targeted. PI4KB is a lipid kinase involved in the replication of several RNA viruses, but common inhibitors of this target are mainly active against members of the <em>Picornaviridae</em> family. Herein we describe the optimization of bithiazole PI4KB inhibitors as broad-spectrum antivirals (BSAs) active against different members of the <em>Picornaviridae</em>, <em>Coronaviridae</em>, <em>Flaviviridae</em> and <em>Poxviridae</em> families. Since some of these viruses are transmitted via respiratory route, the efficacy of one of the most promising compounds was evaluated in an airway model. The molecule showed complete viral inhibition and absence of toxicity. These results pave the road for the development of new BSAs.</p></div>\",\"PeriodicalId\":8259,\"journal\":{\"name\":\"Antiviral research\",\"volume\":\"231 \",\"pages\":\"Article 106003\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0166354224002122/pdfft?md5=25a911d3e9f87dcf8a8f784e017ff140&pid=1-s2.0-S0166354224002122-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antiviral research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166354224002122\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354224002122","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Bithiazole inhibitors of PI4KB show broad-spectrum antiviral activity against different viral families
Broad-spectrum antivirals can be extremely important for pandemic preparedness. Targeting host factors dispensable for the host but indispensable for the virus can result in high barrier to resistance and a large range of viruses targeted. PI4KB is a lipid kinase involved in the replication of several RNA viruses, but common inhibitors of this target are mainly active against members of the Picornaviridae family. Herein we describe the optimization of bithiazole PI4KB inhibitors as broad-spectrum antivirals (BSAs) active against different members of the Picornaviridae, Coronaviridae, Flaviviridae and Poxviridae families. Since some of these viruses are transmitted via respiratory route, the efficacy of one of the most promising compounds was evaluated in an airway model. The molecule showed complete viral inhibition and absence of toxicity. These results pave the road for the development of new BSAs.
期刊介绍:
Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.