Sethumathavan Vadivel , P. Sujita , Bappi Paul , Harshavardhan Mohan
{"title":"涂覆在 Bi2O2CO3 纳米片上的 α-Bi2O3 管状棒用于高性能不对称超级电容器应用","authors":"Sethumathavan Vadivel , P. Sujita , Bappi Paul , Harshavardhan Mohan","doi":"10.1016/j.jssc.2024.125008","DOIUrl":null,"url":null,"abstract":"<div><p>Mixed phases of bismuth oxide nanostructures as an active electrode material in supercapacitor applications have recently gained huge research interest. In this study, the layered Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> nanosheets and the secondary phase of α-Bi<sub>2</sub>O<sub>3</sub> tubular rods named Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>/α-Bi<sub>2</sub>O<sub>3</sub> heterostructure have been synthesized and utilized for supercapacitor applications. The crystal nature and microstructure of the Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>/α-Bi<sub>2</sub>O<sub>3</sub> heterostructure were initially confirmed by powder X-ray diffraction (<em>p</em>-XRD), Raman, UV-Vis diffuse reflectance spectroscopy (UV-DRS, absorbance), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) studies. X-ray photoelectron spectroscopy (XPS) measurements have investigated the oxidation states and chemical binding energies. Regarding the electrochemical performances, the Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>/α-Bi<sub>2</sub>O<sub>3</sub> heterostructure as electro-active material delivered a maximum specific capacitance (C<sub>s</sub>) value of 635 F g<sup>−1</sup> at the given current density value of 1 A g<sup>−1</sup> in a conventional three-electrode mode. A coin cell type electrode has been fabricated using Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>/α-Bi<sub>2</sub>O<sub>3</sub> heterostructure, resulting in an asymmetric supercapacitor device cell (ASC), which has a C<sub>s</sub> of 112 F g<sup>− 1</sup> (at 1 A g<sup>− 1</sup>) and a power density and energy density values of 515 W kg<sup>−1</sup> and 22.5 Wh kg<sup>−1</sup> respectively. The two supercapacitor electrodes in sequence effectively ignite the red-light-emitting diode (LED). Moreover, in the ASC type Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> /α-Bi<sub>2</sub>O<sub>3</sub> heterostructure, the specific capacitance value was slightly reduced to 12.3 % by 2000 cycles, showing favourable cyclic performance and stability during the electrochemical process. Based on the above-mentioned characterization, the appropriate electrochemical performances of Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>/α-Bi<sub>2</sub>O<sub>3</sub> tubular rod heterostructures make them a promising candidate for future energy storage devices.</p></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"340 ","pages":"Article 125008"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"α-Bi2O3 tubular rods coated on Bi2O2CO3 nanosheets for high-performance asymmetric supercapacitor applications\",\"authors\":\"Sethumathavan Vadivel , P. Sujita , Bappi Paul , Harshavardhan Mohan\",\"doi\":\"10.1016/j.jssc.2024.125008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mixed phases of bismuth oxide nanostructures as an active electrode material in supercapacitor applications have recently gained huge research interest. In this study, the layered Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> nanosheets and the secondary phase of α-Bi<sub>2</sub>O<sub>3</sub> tubular rods named Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>/α-Bi<sub>2</sub>O<sub>3</sub> heterostructure have been synthesized and utilized for supercapacitor applications. The crystal nature and microstructure of the Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>/α-Bi<sub>2</sub>O<sub>3</sub> heterostructure were initially confirmed by powder X-ray diffraction (<em>p</em>-XRD), Raman, UV-Vis diffuse reflectance spectroscopy (UV-DRS, absorbance), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) studies. X-ray photoelectron spectroscopy (XPS) measurements have investigated the oxidation states and chemical binding energies. Regarding the electrochemical performances, the Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>/α-Bi<sub>2</sub>O<sub>3</sub> heterostructure as electro-active material delivered a maximum specific capacitance (C<sub>s</sub>) value of 635 F g<sup>−1</sup> at the given current density value of 1 A g<sup>−1</sup> in a conventional three-electrode mode. A coin cell type electrode has been fabricated using Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>/α-Bi<sub>2</sub>O<sub>3</sub> heterostructure, resulting in an asymmetric supercapacitor device cell (ASC), which has a C<sub>s</sub> of 112 F g<sup>− 1</sup> (at 1 A g<sup>− 1</sup>) and a power density and energy density values of 515 W kg<sup>−1</sup> and 22.5 Wh kg<sup>−1</sup> respectively. The two supercapacitor electrodes in sequence effectively ignite the red-light-emitting diode (LED). Moreover, in the ASC type Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> /α-Bi<sub>2</sub>O<sub>3</sub> heterostructure, the specific capacitance value was slightly reduced to 12.3 % by 2000 cycles, showing favourable cyclic performance and stability during the electrochemical process. Based on the above-mentioned characterization, the appropriate electrochemical performances of Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>/α-Bi<sub>2</sub>O<sub>3</sub> tubular rod heterostructures make them a promising candidate for future energy storage devices.</p></div>\",\"PeriodicalId\":378,\"journal\":{\"name\":\"Journal of Solid State Chemistry\",\"volume\":\"340 \",\"pages\":\"Article 125008\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022459624004626\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459624004626","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
氧化铋纳米结构的混合相作为超级电容器应用中的活性电极材料,最近获得了巨大的研究兴趣。本研究合成了层状 Bi2O2CO3 纳米片和α-Bi2O3 管状棒的次生相,命名为 Bi2O2CO3/α-Bi2O3 异质结构,并将其应用于超级电容器。通过粉末 X 射线衍射(p-XRD)、拉曼光谱、紫外可见漫反射光谱(UV-DRS,吸光度)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)研究,初步确定了 Bi2O2CO3/α-Bi2O3 异质结构的晶体性质和微观结构。X 射线光电子能谱(XPS)测量研究了氧化态和化学结合能。在电化学性能方面,Bi2O2CO3/α-Bi2O3 异质结构作为电活性材料,在给定电流密度为 1 A g-1 的传统三电极模式下,最大比电容 (Cs) 值为 635 F g-1。利用 Bi2O2CO3/α-Bi2O3 异质结构制造了一种纽扣电池式电极,从而产生了一种非对称超级电容器设备电池(ASC),其 Cs 值为 112 F g- 1(1 A g- 1 时),功率密度和能量密度值分别为 515 W kg-1 和 22.5 Wh kg-1。两个超级电容器电极依次有效地点燃了红色发光二极管(LED)。此外,在 ASC 型 Bi2O2CO3 /α-Bi2O3 异质结构中,比电容值在 2000 次循环后略微下降至 12.3%,显示了电化学过程中良好的循环性能和稳定性。基于上述表征,Bi2O2CO3/α-Bi2O3 管棒异质结构具有适当的电化学性能,因此有望成为未来储能器件的候选材料。
α-Bi2O3 tubular rods coated on Bi2O2CO3 nanosheets for high-performance asymmetric supercapacitor applications
Mixed phases of bismuth oxide nanostructures as an active electrode material in supercapacitor applications have recently gained huge research interest. In this study, the layered Bi2O2CO3 nanosheets and the secondary phase of α-Bi2O3 tubular rods named Bi2O2CO3/α-Bi2O3 heterostructure have been synthesized and utilized for supercapacitor applications. The crystal nature and microstructure of the Bi2O2CO3/α-Bi2O3 heterostructure were initially confirmed by powder X-ray diffraction (p-XRD), Raman, UV-Vis diffuse reflectance spectroscopy (UV-DRS, absorbance), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) studies. X-ray photoelectron spectroscopy (XPS) measurements have investigated the oxidation states and chemical binding energies. Regarding the electrochemical performances, the Bi2O2CO3/α-Bi2O3 heterostructure as electro-active material delivered a maximum specific capacitance (Cs) value of 635 F g−1 at the given current density value of 1 A g−1 in a conventional three-electrode mode. A coin cell type electrode has been fabricated using Bi2O2CO3/α-Bi2O3 heterostructure, resulting in an asymmetric supercapacitor device cell (ASC), which has a Cs of 112 F g− 1 (at 1 A g− 1) and a power density and energy density values of 515 W kg−1 and 22.5 Wh kg−1 respectively. The two supercapacitor electrodes in sequence effectively ignite the red-light-emitting diode (LED). Moreover, in the ASC type Bi2O2CO3 /α-Bi2O3 heterostructure, the specific capacitance value was slightly reduced to 12.3 % by 2000 cycles, showing favourable cyclic performance and stability during the electrochemical process. Based on the above-mentioned characterization, the appropriate electrochemical performances of Bi2O2CO3/α-Bi2O3 tubular rod heterostructures make them a promising candidate for future energy storage devices.
期刊介绍:
Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.