Jason Moore , Peter McMeekin , Samuel Stuart , Rosie Morris , Yunus Celik , Richard Walker , Victoria Hetherington , Alan Godfrey
{"title":"更好地了解跌倒风险:基于人工智能的计算机视觉进行情境步态评估","authors":"Jason Moore , Peter McMeekin , Samuel Stuart , Rosie Morris , Yunus Celik , Richard Walker , Victoria Hetherington , Alan Godfrey","doi":"10.1016/j.maturitas.2024.108116","DOIUrl":null,"url":null,"abstract":"<div><p>Contemporary research to better understand free-living fall risk assessment in Parkinson's disease (PD) often relies on the use of wearable inertial-based measurement units (IMUs) to quantify useful temporal and spatial gait characteristics (e.g., step time, step length). Although use of IMUs is useful to understand some intrinsic PD fall-risk factors, their use alone is limited as they do not provide information on extrinsic factors (e.g., obstacles). Here, we update on the use of ergonomic wearable video-based eye-tracking glasses coupled with AI-based computer vision methodologies to provide information efficiently and ethically in free-living home-based environments to better understand IMU-based data in a small group of people with PD. The use of video and AI within PD research can be seen as an evolutionary step to improve methods to understand fall risk more comprehensively.</p></div>","PeriodicalId":51120,"journal":{"name":"Maturitas","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378512224002111/pdfft?md5=91997a03b833ea6d9eb7459bd0cdee2b&pid=1-s2.0-S0378512224002111-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Better understanding fall risk: AI-based computer vision for contextual gait assessment\",\"authors\":\"Jason Moore , Peter McMeekin , Samuel Stuart , Rosie Morris , Yunus Celik , Richard Walker , Victoria Hetherington , Alan Godfrey\",\"doi\":\"10.1016/j.maturitas.2024.108116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Contemporary research to better understand free-living fall risk assessment in Parkinson's disease (PD) often relies on the use of wearable inertial-based measurement units (IMUs) to quantify useful temporal and spatial gait characteristics (e.g., step time, step length). Although use of IMUs is useful to understand some intrinsic PD fall-risk factors, their use alone is limited as they do not provide information on extrinsic factors (e.g., obstacles). Here, we update on the use of ergonomic wearable video-based eye-tracking glasses coupled with AI-based computer vision methodologies to provide information efficiently and ethically in free-living home-based environments to better understand IMU-based data in a small group of people with PD. The use of video and AI within PD research can be seen as an evolutionary step to improve methods to understand fall risk more comprehensively.</p></div>\",\"PeriodicalId\":51120,\"journal\":{\"name\":\"Maturitas\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378512224002111/pdfft?md5=91997a03b833ea6d9eb7459bd0cdee2b&pid=1-s2.0-S0378512224002111-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maturitas\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378512224002111\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maturitas","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378512224002111","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Better understanding fall risk: AI-based computer vision for contextual gait assessment
Contemporary research to better understand free-living fall risk assessment in Parkinson's disease (PD) often relies on the use of wearable inertial-based measurement units (IMUs) to quantify useful temporal and spatial gait characteristics (e.g., step time, step length). Although use of IMUs is useful to understand some intrinsic PD fall-risk factors, their use alone is limited as they do not provide information on extrinsic factors (e.g., obstacles). Here, we update on the use of ergonomic wearable video-based eye-tracking glasses coupled with AI-based computer vision methodologies to provide information efficiently and ethically in free-living home-based environments to better understand IMU-based data in a small group of people with PD. The use of video and AI within PD research can be seen as an evolutionary step to improve methods to understand fall risk more comprehensively.
期刊介绍:
Maturitas is an international multidisciplinary peer reviewed scientific journal of midlife health and beyond publishing original research, reviews, consensus statements and guidelines, and mini-reviews. The journal provides a forum for all aspects of postreproductive health in both genders ranging from basic science to health and social care.
Topic areas include:• Aging• Alternative and Complementary medicines• Arthritis and Bone Health• Cancer• Cardiovascular Health• Cognitive and Physical Functioning• Epidemiology, health and social care• Gynecology/ Reproductive Endocrinology• Nutrition/ Obesity Diabetes/ Metabolic Syndrome• Menopause, Ovarian Aging• Mental Health• Pharmacology• Sexuality• Quality of Life