Shilei Wu , Hongchen Gao , Mingxiang Ling , Mingqiang Pan , Tao Chen
{"title":"用于压电式 Scott-Russell 微型夹持器的横向不对称挠性铰链的顺应性分析","authors":"Shilei Wu , Hongchen Gao , Mingxiang Ling , Mingqiang Pan , Tao Chen","doi":"10.1016/j.precisioneng.2024.09.010","DOIUrl":null,"url":null,"abstract":"<div><p>Notch flexure hinges with longitudinal/transverse asymmetries can be widely found in compliant mechanisms to balance the performance trade-offs. However, the transverse asymmetry often leads to difficult analyses of kinetostatics and dynamics. In this paper, a miniaturized piezoelectric gripper featuring reversed Scott-Russell compliant amplifier with transversely asymmetric single-notched flexure hinges is designed for use in confined spaces. The compliance and vibration characteristics of the transversely asymmetric single-notched flexure hinges are quantitatively analyzed by a new transfer matrix method. The proposed theoretical methodology involves discretizing the transversely asymmetric flexure hinge into a series of constant beam segments with non-coaxial nodes, which enables a straightforward modeling process and hence simplifies the kinetostatic and dynamic analyses of compliant mechanisms comprised of complex flexure hinges. Comparative validations with respect to the finite element simulation and experiments confirm the advantages of easy operation and small-scale equation sets of the proposed modeling method. As to the designed piezoelectric microgripper with single-notched flexure hinges, the jaw displacement amplification ratio of 20 and resonance frequency of 1250 Hz has been experimentally tested with a small size of 38 mm × 15 mm × 7 mm.</p></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"91 ","pages":"Pages 95-106"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compliance analysis of transversely asymmetric flexure hinges for use in a piezoelectric Scott-Russell microgripper\",\"authors\":\"Shilei Wu , Hongchen Gao , Mingxiang Ling , Mingqiang Pan , Tao Chen\",\"doi\":\"10.1016/j.precisioneng.2024.09.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Notch flexure hinges with longitudinal/transverse asymmetries can be widely found in compliant mechanisms to balance the performance trade-offs. However, the transverse asymmetry often leads to difficult analyses of kinetostatics and dynamics. In this paper, a miniaturized piezoelectric gripper featuring reversed Scott-Russell compliant amplifier with transversely asymmetric single-notched flexure hinges is designed for use in confined spaces. The compliance and vibration characteristics of the transversely asymmetric single-notched flexure hinges are quantitatively analyzed by a new transfer matrix method. The proposed theoretical methodology involves discretizing the transversely asymmetric flexure hinge into a series of constant beam segments with non-coaxial nodes, which enables a straightforward modeling process and hence simplifies the kinetostatic and dynamic analyses of compliant mechanisms comprised of complex flexure hinges. Comparative validations with respect to the finite element simulation and experiments confirm the advantages of easy operation and small-scale equation sets of the proposed modeling method. As to the designed piezoelectric microgripper with single-notched flexure hinges, the jaw displacement amplification ratio of 20 and resonance frequency of 1250 Hz has been experimentally tested with a small size of 38 mm × 15 mm × 7 mm.</p></div>\",\"PeriodicalId\":54589,\"journal\":{\"name\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"volume\":\"91 \",\"pages\":\"Pages 95-106\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141635924002101\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924002101","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
摘要
具有纵向/横向不对称的凹槽挠性铰链广泛存在于顺应式机构中,以平衡性能权衡。然而,横向不对称通常会导致难以进行运动学和动力学分析。本文设计了一种微型压电机械手,它具有反向斯科特-鲁塞尔顺应放大器和横向不对称单缺口挠性铰链,可在密闭空间中使用。通过一种新的传递矩阵方法,对横向不对称单缺口挠性铰链的顺应性和振动特性进行了定量分析。所提出的理论方法包括将横向不对称挠性铰链离散化为一系列具有非同轴节点的恒定梁段,从而实现了直接建模过程,并因此简化了由复杂挠性铰链组成的顺应机构的运动静力学和动力学分析。有限元模拟和实验的对比验证证实了所提出的建模方法具有操作简便和方程组规模小的优点。对于所设计的带有单缺口挠性铰链的压电微型夹钳,实验测试了其夹钳位移放大比为 20,共振频率为 1250 Hz,尺寸较小,为 38 mm × 15 mm × 7 mm。
Compliance analysis of transversely asymmetric flexure hinges for use in a piezoelectric Scott-Russell microgripper
Notch flexure hinges with longitudinal/transverse asymmetries can be widely found in compliant mechanisms to balance the performance trade-offs. However, the transverse asymmetry often leads to difficult analyses of kinetostatics and dynamics. In this paper, a miniaturized piezoelectric gripper featuring reversed Scott-Russell compliant amplifier with transversely asymmetric single-notched flexure hinges is designed for use in confined spaces. The compliance and vibration characteristics of the transversely asymmetric single-notched flexure hinges are quantitatively analyzed by a new transfer matrix method. The proposed theoretical methodology involves discretizing the transversely asymmetric flexure hinge into a series of constant beam segments with non-coaxial nodes, which enables a straightforward modeling process and hence simplifies the kinetostatic and dynamic analyses of compliant mechanisms comprised of complex flexure hinges. Comparative validations with respect to the finite element simulation and experiments confirm the advantages of easy operation and small-scale equation sets of the proposed modeling method. As to the designed piezoelectric microgripper with single-notched flexure hinges, the jaw displacement amplification ratio of 20 and resonance frequency of 1250 Hz has been experimentally tested with a small size of 38 mm × 15 mm × 7 mm.
期刊介绍:
Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.