Dmitry I. Zybin , Anatoly A. Klishin , Natalia V. Orlova , Dmitry А. Zyryanov , Anna I. Prostyakova , Dmitry V. Kapustin
{"title":"无需复杂设备即可分离重组促红细胞生成素和人血清白蛋白","authors":"Dmitry I. Zybin , Anatoly A. Klishin , Natalia V. Orlova , Dmitry А. Zyryanov , Anna I. Prostyakova , Dmitry V. Kapustin","doi":"10.1016/j.ab.2024.115673","DOIUrl":null,"url":null,"abstract":"<div><p>A number of drugs based on recombinant erythropoietin contain human serum albumin as an auxiliary component. The presence of this protein hinders the proper control of the drug quality in accordance with the requirements of regulating agencies. We propose the novel method for separation of recombinant erythropoietin (epoetin beta) and human serum albumin. It is based on the subsequent use of hydrophobic sorbent and anion exchange resin placed in gravity flow columns (without the use of spin-columns). The proposed approach makes it possible to concentrate and purify the preparations containing the epoetin beta both at high and at minimal concentrations (the ratio of the amount of albumin and erythropoietin in the used preparations can reach 125:1). The average yield of epoetin beta after the use of hydrophobic sorbent and anion exchange resin was 75 % and 97 %, respectively. It was shown that the determined conditions of sample preparation had no affect on the content of the epoetin beta in the product.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"696 ","pages":"Article 115673"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separation of recombinant erythropoietin and human serum albumin without the use of sophisticated equipment\",\"authors\":\"Dmitry I. Zybin , Anatoly A. Klishin , Natalia V. Orlova , Dmitry А. Zyryanov , Anna I. Prostyakova , Dmitry V. Kapustin\",\"doi\":\"10.1016/j.ab.2024.115673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A number of drugs based on recombinant erythropoietin contain human serum albumin as an auxiliary component. The presence of this protein hinders the proper control of the drug quality in accordance with the requirements of regulating agencies. We propose the novel method for separation of recombinant erythropoietin (epoetin beta) and human serum albumin. It is based on the subsequent use of hydrophobic sorbent and anion exchange resin placed in gravity flow columns (without the use of spin-columns). The proposed approach makes it possible to concentrate and purify the preparations containing the epoetin beta both at high and at minimal concentrations (the ratio of the amount of albumin and erythropoietin in the used preparations can reach 125:1). The average yield of epoetin beta after the use of hydrophobic sorbent and anion exchange resin was 75 % and 97 %, respectively. It was shown that the determined conditions of sample preparation had no affect on the content of the epoetin beta in the product.</p></div>\",\"PeriodicalId\":7830,\"journal\":{\"name\":\"Analytical biochemistry\",\"volume\":\"696 \",\"pages\":\"Article 115673\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003269724002173\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724002173","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Separation of recombinant erythropoietin and human serum albumin without the use of sophisticated equipment
A number of drugs based on recombinant erythropoietin contain human serum albumin as an auxiliary component. The presence of this protein hinders the proper control of the drug quality in accordance with the requirements of regulating agencies. We propose the novel method for separation of recombinant erythropoietin (epoetin beta) and human serum albumin. It is based on the subsequent use of hydrophobic sorbent and anion exchange resin placed in gravity flow columns (without the use of spin-columns). The proposed approach makes it possible to concentrate and purify the preparations containing the epoetin beta both at high and at minimal concentrations (the ratio of the amount of albumin and erythropoietin in the used preparations can reach 125:1). The average yield of epoetin beta after the use of hydrophobic sorbent and anion exchange resin was 75 % and 97 %, respectively. It was shown that the determined conditions of sample preparation had no affect on the content of the epoetin beta in the product.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.