Qi Li , Qi Zeng , Pavel A. Troshin , Qinye Bao , Shaobing Xiong
{"title":"通过多功能分子添加剂提高倒置型过氧化物太阳能电池的光伏性能和稳定性","authors":"Qi Li , Qi Zeng , Pavel A. Troshin , Qinye Bao , Shaobing Xiong","doi":"10.1016/j.orgel.2024.107139","DOIUrl":null,"url":null,"abstract":"<div><p>The film quality of perovskite absorber plays a fundamental role in determining the efficiency and stability of perovskite solar cells (PSCs), of which high crystallinity and low defect density are consistently persuaded. Here, a strategy using multifunctional additive of N,N′-Diallyl-L-tartardiamide (NDT) to produce high-quality perovskite film is proposed. The rich coordination and hydrogen bonding between NDT and perovskite effectively passivate trap states, improve film crystallinity, stabilize perovskite crystal structure and confine ions migration, resulting in enhancement of charge transport and suppression of nonradiative recombination. Consequently, compared with the control device (19.07 %), the NDT-modified devices achieve a champion efficiency of 21.71 % with negligible hysteresis as well as excellent air and light stability. This work presents a facile and effective approach via multifunctional molecular additive to achieve high-performance inverted (p-i-n) PSCs.</p></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"135 ","pages":"Article 107139"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing photovoltaic performance and stability of inverted perovskite solar cells via multifunctional molecular additive\",\"authors\":\"Qi Li , Qi Zeng , Pavel A. Troshin , Qinye Bao , Shaobing Xiong\",\"doi\":\"10.1016/j.orgel.2024.107139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The film quality of perovskite absorber plays a fundamental role in determining the efficiency and stability of perovskite solar cells (PSCs), of which high crystallinity and low defect density are consistently persuaded. Here, a strategy using multifunctional additive of N,N′-Diallyl-L-tartardiamide (NDT) to produce high-quality perovskite film is proposed. The rich coordination and hydrogen bonding between NDT and perovskite effectively passivate trap states, improve film crystallinity, stabilize perovskite crystal structure and confine ions migration, resulting in enhancement of charge transport and suppression of nonradiative recombination. Consequently, compared with the control device (19.07 %), the NDT-modified devices achieve a champion efficiency of 21.71 % with negligible hysteresis as well as excellent air and light stability. This work presents a facile and effective approach via multifunctional molecular additive to achieve high-performance inverted (p-i-n) PSCs.</p></div>\",\"PeriodicalId\":399,\"journal\":{\"name\":\"Organic Electronics\",\"volume\":\"135 \",\"pages\":\"Article 107139\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566119924001502\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001502","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing photovoltaic performance and stability of inverted perovskite solar cells via multifunctional molecular additive
The film quality of perovskite absorber plays a fundamental role in determining the efficiency and stability of perovskite solar cells (PSCs), of which high crystallinity and low defect density are consistently persuaded. Here, a strategy using multifunctional additive of N,N′-Diallyl-L-tartardiamide (NDT) to produce high-quality perovskite film is proposed. The rich coordination and hydrogen bonding between NDT and perovskite effectively passivate trap states, improve film crystallinity, stabilize perovskite crystal structure and confine ions migration, resulting in enhancement of charge transport and suppression of nonradiative recombination. Consequently, compared with the control device (19.07 %), the NDT-modified devices achieve a champion efficiency of 21.71 % with negligible hysteresis as well as excellent air and light stability. This work presents a facile and effective approach via multifunctional molecular additive to achieve high-performance inverted (p-i-n) PSCs.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.