具有一个固定边界和一个自由边界的非线性感染病毒传播模型的动力学特性

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Mingxin Wang
{"title":"具有一个固定边界和一个自由边界的非线性感染病毒传播模型的动力学特性","authors":"Mingxin Wang","doi":"10.1016/j.cnsns.2024.108348","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study a nonlinear infection viral propagation model with diffusion, in which, the left boundary is fixed and with homogeneous Dirichlet boundary conditions, while the right boundary is free. We find that the habitat always expands to the half line <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math></span>, and that the virus and infected cells always die out when the <em>Basic Reproduction Number</em> <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>1</mn></mrow></math></span>, while the virus and infected cells have persistence properties when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>. To obtain the persistence properties of virus and infected cells when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>, the most work of this paper focuses on the existence and uniqueness of bounded positive equilibrium solutions for subsystems and the existence of positive equilibrium solutions for the entire system.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1007570424005331/pdfft?md5=b3fa42804adbee714122d52eb5b046ee&pid=1-s2.0-S1007570424005331-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dynamics of a nonlinear infection viral propagation model with one fixed boundary and one free boundary\",\"authors\":\"Mingxin Wang\",\"doi\":\"10.1016/j.cnsns.2024.108348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we study a nonlinear infection viral propagation model with diffusion, in which, the left boundary is fixed and with homogeneous Dirichlet boundary conditions, while the right boundary is free. We find that the habitat always expands to the half line <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math></span>, and that the virus and infected cells always die out when the <em>Basic Reproduction Number</em> <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>1</mn></mrow></math></span>, while the virus and infected cells have persistence properties when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>. To obtain the persistence properties of virus and infected cells when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>, the most work of this paper focuses on the existence and uniqueness of bounded positive equilibrium solutions for subsystems and the existence of positive equilibrium solutions for the entire system.</p></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005331/pdfft?md5=b3fa42804adbee714122d52eb5b046ee&pid=1-s2.0-S1007570424005331-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005331\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005331","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一个具有扩散作用的非线性感染病毒传播模型,其中,左边界是固定的,具有同质 Dirichlet 边界条件,而右边界是自由的。为了获得 R0>1 时病毒和受感染细胞的持续特性,本文的大部分工作集中于子系统有界正平衡解的存在性和唯一性以及整个系统正平衡解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of a nonlinear infection viral propagation model with one fixed boundary and one free boundary

In this paper we study a nonlinear infection viral propagation model with diffusion, in which, the left boundary is fixed and with homogeneous Dirichlet boundary conditions, while the right boundary is free. We find that the habitat always expands to the half line [0,), and that the virus and infected cells always die out when the Basic Reproduction Number R01, while the virus and infected cells have persistence properties when R0>1. To obtain the persistence properties of virus and infected cells when R0>1, the most work of this paper focuses on the existence and uniqueness of bounded positive equilibrium solutions for subsystems and the existence of positive equilibrium solutions for the entire system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信