Ronghua Mu , Xiaoyan Qin , Wei Zheng , Peng Yang , Bingqin Huang , Xiqi Zhu
{"title":"利用因果网络分析评估脑小血管疾病磁共振成像中的渐进性脑结构异常","authors":"Ronghua Mu , Xiaoyan Qin , Wei Zheng , Peng Yang , Bingqin Huang , Xiqi Zhu","doi":"10.1016/j.nicl.2024.103672","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><p>Cerebral small vessel disease (CSVD) is a complex condition characterized by a combination of microcirculation disorders and neurodegenerative processes, CSVD is associated with structural abnormalities in multiple brain regions. However, the progressive pattern of structural changes remains unknown.</p></div><div><h3>Methods</h3><p>In order to detail the progressive structural changes in CSVD patients according to the degree of cognitive impairment, we recruited 121 CSVD patients and 104 healthy controls (HCs). Voxel-based morphometry was employed to measure the gray matter volume (GMV) of each participant. According to the VICCCS-2 diagnostic criteria, patients were initially divided into three stage groups, then we investigated the GMV changes in each stage and their causal relationships using causal structure covariance network (CaSCN) analysis.</p></div><div><h3>Results</h3><p>Overall, patients with CSVD presented stage-specific GMV alterations compared with HCs. With the worsening of cognitive impairment, the decrease in gray matter volume starts from the right hippocampus and gradually spreads to the cortical-subcortical brain regions. Importantly, the right hippocampus in CSVD patients plays a driving role in the directional network and forms both positive and negative causal effect networks with cortical-subcortical brain regions.</p></div><div><h3>Conclusions</h3><p>This study reveals the significance of the right hippocampus as an early pathological area in CSVD patients and its causal impact on brain GMV changes with disease progression, shedding light on structural brain damage hierarchy and compensatory mechanisms.</p></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221315822400113X/pdfft?md5=120bb78dc1595894fb23ae52088841ee&pid=1-s2.0-S221315822400113X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Progressive brain structural abnormality in cerebral small vessel disease assessed with MR imaging by using causal network analysis\",\"authors\":\"Ronghua Mu , Xiaoyan Qin , Wei Zheng , Peng Yang , Bingqin Huang , Xiqi Zhu\",\"doi\":\"10.1016/j.nicl.2024.103672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Aims</h3><p>Cerebral small vessel disease (CSVD) is a complex condition characterized by a combination of microcirculation disorders and neurodegenerative processes, CSVD is associated with structural abnormalities in multiple brain regions. However, the progressive pattern of structural changes remains unknown.</p></div><div><h3>Methods</h3><p>In order to detail the progressive structural changes in CSVD patients according to the degree of cognitive impairment, we recruited 121 CSVD patients and 104 healthy controls (HCs). Voxel-based morphometry was employed to measure the gray matter volume (GMV) of each participant. According to the VICCCS-2 diagnostic criteria, patients were initially divided into three stage groups, then we investigated the GMV changes in each stage and their causal relationships using causal structure covariance network (CaSCN) analysis.</p></div><div><h3>Results</h3><p>Overall, patients with CSVD presented stage-specific GMV alterations compared with HCs. With the worsening of cognitive impairment, the decrease in gray matter volume starts from the right hippocampus and gradually spreads to the cortical-subcortical brain regions. Importantly, the right hippocampus in CSVD patients plays a driving role in the directional network and forms both positive and negative causal effect networks with cortical-subcortical brain regions.</p></div><div><h3>Conclusions</h3><p>This study reveals the significance of the right hippocampus as an early pathological area in CSVD patients and its causal impact on brain GMV changes with disease progression, shedding light on structural brain damage hierarchy and compensatory mechanisms.</p></div>\",\"PeriodicalId\":54359,\"journal\":{\"name\":\"Neuroimage-Clinical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S221315822400113X/pdfft?md5=120bb78dc1595894fb23ae52088841ee&pid=1-s2.0-S221315822400113X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroimage-Clinical\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221315822400113X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221315822400113X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Progressive brain structural abnormality in cerebral small vessel disease assessed with MR imaging by using causal network analysis
Aims
Cerebral small vessel disease (CSVD) is a complex condition characterized by a combination of microcirculation disorders and neurodegenerative processes, CSVD is associated with structural abnormalities in multiple brain regions. However, the progressive pattern of structural changes remains unknown.
Methods
In order to detail the progressive structural changes in CSVD patients according to the degree of cognitive impairment, we recruited 121 CSVD patients and 104 healthy controls (HCs). Voxel-based morphometry was employed to measure the gray matter volume (GMV) of each participant. According to the VICCCS-2 diagnostic criteria, patients were initially divided into three stage groups, then we investigated the GMV changes in each stage and their causal relationships using causal structure covariance network (CaSCN) analysis.
Results
Overall, patients with CSVD presented stage-specific GMV alterations compared with HCs. With the worsening of cognitive impairment, the decrease in gray matter volume starts from the right hippocampus and gradually spreads to the cortical-subcortical brain regions. Importantly, the right hippocampus in CSVD patients plays a driving role in the directional network and forms both positive and negative causal effect networks with cortical-subcortical brain regions.
Conclusions
This study reveals the significance of the right hippocampus as an early pathological area in CSVD patients and its causal impact on brain GMV changes with disease progression, shedding light on structural brain damage hierarchy and compensatory mechanisms.
期刊介绍:
NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging.
The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.