遭受极端连续地震-日震的沿海桥梁的动态响应和累积损伤

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL
{"title":"遭受极端连续地震-日震的沿海桥梁的动态响应和累积损伤","authors":"","doi":"10.1016/j.soildyn.2024.108975","DOIUrl":null,"url":null,"abstract":"<div><p>Coastal bridges, as vital components of transportation networks, are vulnerable to damage from successive earthquake-tsunami (EQ-TS) events in rapidly developing coastal hazard-prone cities. Understanding how these bridges perform under the combined effects of earthquakes and tsunamis is crucial. Though studies have investigated coastal buildings facing these hazards, there is limited research on bridges experiencing extreme EQ-TS events, especially on the generation of load sequences, dynamic structural responses, and cumulative damage assessment. To overcome these limitations, this study aims to thoroughly examine the dynamic behavior of reinforced concrete coastal bridges subjected to successive EQ-TS hazards. To generate practical sequential EQ-TS loads, records of the 2011 Tohoku earthquake and resulting tsunami heights, which are calculated based on the earthquake magnitude and epicentral distance, are utilized for analyses. The tsunami wave load time series for each earthquake record is created using a high-fidelity computational fluid dynamics model. Nonlinear time-history analyses are then performed for the bridge model in OpenSees under the synthetic EQ-TS sequences, quantifying structural responses and cumulative damage. Moreover, the comparative results of structural performance under single and successive hazard scenarios are presented and discussed. Results indicate that successive EQ-TS hazards not only induce much larger structural responses as compared to a single EQ hazard, but also produce considerable residual displacements for both bearings and decks. The wave height is more appropriate than the peak ground acceleration as an individual intensity measure for predicting the cumulative damage of bridges under cascading EQ-TS hazards. Relying solely on peak responses for assessing the dynamic performance of piers under successive EQ-TS sequences may underestimate the actual damage.</p></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic responses and cumulative damage of coastal bridges subjected to extreme sequential earthquake-tsunamis\",\"authors\":\"\",\"doi\":\"10.1016/j.soildyn.2024.108975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Coastal bridges, as vital components of transportation networks, are vulnerable to damage from successive earthquake-tsunami (EQ-TS) events in rapidly developing coastal hazard-prone cities. Understanding how these bridges perform under the combined effects of earthquakes and tsunamis is crucial. Though studies have investigated coastal buildings facing these hazards, there is limited research on bridges experiencing extreme EQ-TS events, especially on the generation of load sequences, dynamic structural responses, and cumulative damage assessment. To overcome these limitations, this study aims to thoroughly examine the dynamic behavior of reinforced concrete coastal bridges subjected to successive EQ-TS hazards. To generate practical sequential EQ-TS loads, records of the 2011 Tohoku earthquake and resulting tsunami heights, which are calculated based on the earthquake magnitude and epicentral distance, are utilized for analyses. The tsunami wave load time series for each earthquake record is created using a high-fidelity computational fluid dynamics model. Nonlinear time-history analyses are then performed for the bridge model in OpenSees under the synthetic EQ-TS sequences, quantifying structural responses and cumulative damage. Moreover, the comparative results of structural performance under single and successive hazard scenarios are presented and discussed. Results indicate that successive EQ-TS hazards not only induce much larger structural responses as compared to a single EQ hazard, but also produce considerable residual displacements for both bearings and decks. The wave height is more appropriate than the peak ground acceleration as an individual intensity measure for predicting the cumulative damage of bridges under cascading EQ-TS hazards. Relying solely on peak responses for assessing the dynamic performance of piers under successive EQ-TS sequences may underestimate the actual damage.</p></div>\",\"PeriodicalId\":49502,\"journal\":{\"name\":\"Soil Dynamics and Earthquake Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Dynamics and Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026772612400527X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026772612400527X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

在快速发展的沿海灾害多发城市,沿海桥梁作为交通网络的重要组成部分,很容易受到连续地震-海啸(EQ-TS)事件的破坏。了解这些桥梁在地震和海啸共同作用下的性能至关重要。虽然已有研究对面临这些灾害的沿海建筑进行了调查,但对经历极端 EQ-TS 事件的桥梁的研究却很有限,尤其是在荷载序列的产生、动态结构响应和累积损伤评估方面。为了克服这些局限性,本研究旨在深入研究钢筋混凝土沿海桥梁在连续 EQ-TS 危险下的动态行为。为了生成实用的连续 EQ-TS 荷载,我们利用了 2011 年东北地震的记录以及根据震级和震中距计算出的海啸高度进行分析。每个地震记录的海啸波载荷时间序列都是通过高保真计算流体动力学模型创建的。然后在 OpenSees 中对合成 EQ-TS 序列下的桥梁模型进行非线性时序分析,量化结构响应和累积损伤。此外,还介绍并讨论了单一和连续灾害情景下结构性能的比较结果。结果表明,与单次 EQ-TS 危险相比,连续 EQ-TS 危险不仅会引起更大的结构响应,还会对支座和桥面产生相当大的残余位移。波高比地面加速度峰值更适合作为预测级联 EQ-TS 危险下桥梁累积破坏的单个强度指标。仅仅依靠峰值响应来评估连续 EQ-TS 序列下桥墩的动态性能可能会低估实际损害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic responses and cumulative damage of coastal bridges subjected to extreme sequential earthquake-tsunamis

Coastal bridges, as vital components of transportation networks, are vulnerable to damage from successive earthquake-tsunami (EQ-TS) events in rapidly developing coastal hazard-prone cities. Understanding how these bridges perform under the combined effects of earthquakes and tsunamis is crucial. Though studies have investigated coastal buildings facing these hazards, there is limited research on bridges experiencing extreme EQ-TS events, especially on the generation of load sequences, dynamic structural responses, and cumulative damage assessment. To overcome these limitations, this study aims to thoroughly examine the dynamic behavior of reinforced concrete coastal bridges subjected to successive EQ-TS hazards. To generate practical sequential EQ-TS loads, records of the 2011 Tohoku earthquake and resulting tsunami heights, which are calculated based on the earthquake magnitude and epicentral distance, are utilized for analyses. The tsunami wave load time series for each earthquake record is created using a high-fidelity computational fluid dynamics model. Nonlinear time-history analyses are then performed for the bridge model in OpenSees under the synthetic EQ-TS sequences, quantifying structural responses and cumulative damage. Moreover, the comparative results of structural performance under single and successive hazard scenarios are presented and discussed. Results indicate that successive EQ-TS hazards not only induce much larger structural responses as compared to a single EQ hazard, but also produce considerable residual displacements for both bearings and decks. The wave height is more appropriate than the peak ground acceleration as an individual intensity measure for predicting the cumulative damage of bridges under cascading EQ-TS hazards. Relying solely on peak responses for assessing the dynamic performance of piers under successive EQ-TS sequences may underestimate the actual damage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信