{"title":"利用羧甲基纤维素填充碳纳米管/MXene 制造超灵敏柔性应变传感器,用于机器学习辅助手写识别","authors":"Junming Cao, Xueguang Yuan, Yangan Zhang, Qi Wang, Qi He, Shaohua Guo, Xiaomin Ren","doi":"10.1021/acsami.4c09786","DOIUrl":null,"url":null,"abstract":"The combination of wearable sensors with machine learning enables intelligent perception in human–machine interaction and healthcare, but achieving high sensitivity and a wide working range in flexible strain sensors for signal acquisition and accurate recognition remains challenging. Herein, we introduced carboxymethyl cellulose (CMC) into a carbon nanotubes (CNTs)/MXene hybrid network, forming tight anchoring among the conductive materials and, thus, bringing enhanced interaction. The silicone-rubber-encapsulated CMC-anchored CNTs/MXene (CCM) strain sensor exhibits an excellent sensitivity (maximum gauge factor up to 71 294), wide working range (200%), ultralow detection limit (0.05%), and outstanding durability (over 10 000 cycles), which is superior to most of the recently reported counterparts also based on a conductive composite film. Moreover, the sensor achieves seamless integration with human skin with the help of a poly(acrylic acid) adhesive layer, successfully obtaining stable and clear waveforms with meaningful profiles from the human body. On this basis, we proposed and realized a novel in-air handwriting recognition method via extracting multiple features of high-quality strain signals assisted by deep neural networks, achieving a high classification accuracy of 98.00 and 94.85% for Arabic numerals and letters, respectively. Our work provides an effective approach for significantly improving strain sensing performance, thereby facilitating innovative applications of flexible sensors.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasensitive Flexible Strain Sensor Made with Carboxymethyl-Cellulose-Anchored Carbon Nanotubes/MXene for Machine-Learning-Assisted Handwriting Recognition\",\"authors\":\"Junming Cao, Xueguang Yuan, Yangan Zhang, Qi Wang, Qi He, Shaohua Guo, Xiaomin Ren\",\"doi\":\"10.1021/acsami.4c09786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of wearable sensors with machine learning enables intelligent perception in human–machine interaction and healthcare, but achieving high sensitivity and a wide working range in flexible strain sensors for signal acquisition and accurate recognition remains challenging. Herein, we introduced carboxymethyl cellulose (CMC) into a carbon nanotubes (CNTs)/MXene hybrid network, forming tight anchoring among the conductive materials and, thus, bringing enhanced interaction. The silicone-rubber-encapsulated CMC-anchored CNTs/MXene (CCM) strain sensor exhibits an excellent sensitivity (maximum gauge factor up to 71 294), wide working range (200%), ultralow detection limit (0.05%), and outstanding durability (over 10 000 cycles), which is superior to most of the recently reported counterparts also based on a conductive composite film. Moreover, the sensor achieves seamless integration with human skin with the help of a poly(acrylic acid) adhesive layer, successfully obtaining stable and clear waveforms with meaningful profiles from the human body. On this basis, we proposed and realized a novel in-air handwriting recognition method via extracting multiple features of high-quality strain signals assisted by deep neural networks, achieving a high classification accuracy of 98.00 and 94.85% for Arabic numerals and letters, respectively. Our work provides an effective approach for significantly improving strain sensing performance, thereby facilitating innovative applications of flexible sensors.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c09786\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c09786","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultrasensitive Flexible Strain Sensor Made with Carboxymethyl-Cellulose-Anchored Carbon Nanotubes/MXene for Machine-Learning-Assisted Handwriting Recognition
The combination of wearable sensors with machine learning enables intelligent perception in human–machine interaction and healthcare, but achieving high sensitivity and a wide working range in flexible strain sensors for signal acquisition and accurate recognition remains challenging. Herein, we introduced carboxymethyl cellulose (CMC) into a carbon nanotubes (CNTs)/MXene hybrid network, forming tight anchoring among the conductive materials and, thus, bringing enhanced interaction. The silicone-rubber-encapsulated CMC-anchored CNTs/MXene (CCM) strain sensor exhibits an excellent sensitivity (maximum gauge factor up to 71 294), wide working range (200%), ultralow detection limit (0.05%), and outstanding durability (over 10 000 cycles), which is superior to most of the recently reported counterparts also based on a conductive composite film. Moreover, the sensor achieves seamless integration with human skin with the help of a poly(acrylic acid) adhesive layer, successfully obtaining stable and clear waveforms with meaningful profiles from the human body. On this basis, we proposed and realized a novel in-air handwriting recognition method via extracting multiple features of high-quality strain signals assisted by deep neural networks, achieving a high classification accuracy of 98.00 and 94.85% for Arabic numerals and letters, respectively. Our work provides an effective approach for significantly improving strain sensing performance, thereby facilitating innovative applications of flexible sensors.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.