复合修正科特韦格-德-弗里斯方程中周期背景上的多重孤子和呼吸器

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jiguang Rao , Dumitru Mihalache , Jingsong He
{"title":"复合修正科特韦格-德-弗里斯方程中周期背景上的多重孤子和呼吸器","authors":"Jiguang Rao ,&nbsp;Dumitru Mihalache ,&nbsp;Jingsong He","doi":"10.1016/j.aml.2024.109308","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores multiple soliton and breather solutions on periodic backgrounds in the complex modified Korteweg–de Vries equation. The compact determinant formulas and their detailed derivation process for these solutions are provided <em>via</em> the bilinear method. We confirm that on periodic backgrounds, soliton amplitudes exhibit regular periodic behaviors, while breather amplitudes display quasi-periodic behaviors, as is expected for a breather with one period propagating over a periodic wave with another period. The asymptotic expressions for the solitons and breathers, which establish the high accuracy of the derived solutions, are provided to reveal the soliton and breather dynamics on the periodic backgrounds.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109308"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple solitons and breathers on periodic backgrounds in the complex modified Korteweg–de Vries equation\",\"authors\":\"Jiguang Rao ,&nbsp;Dumitru Mihalache ,&nbsp;Jingsong He\",\"doi\":\"10.1016/j.aml.2024.109308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores multiple soliton and breather solutions on periodic backgrounds in the complex modified Korteweg–de Vries equation. The compact determinant formulas and their detailed derivation process for these solutions are provided <em>via</em> the bilinear method. We confirm that on periodic backgrounds, soliton amplitudes exhibit regular periodic behaviors, while breather amplitudes display quasi-periodic behaviors, as is expected for a breather with one period propagating over a periodic wave with another period. The asymptotic expressions for the solitons and breathers, which establish the high accuracy of the derived solutions, are provided to reveal the soliton and breather dynamics on the periodic backgrounds.</p></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"160 \",\"pages\":\"Article 109308\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003288\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003288","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了复杂修正 Korteweg-de Vries 方程中周期背景上的多重孤子和呼吸解。通过双线性方法为这些解提供了紧凑的行列式公式及其详细的推导过程。我们证实,在周期性背景上,孤子振幅表现出规则的周期行为,而呼吸子振幅则表现出准周期行为,这是一个周期的呼吸子在另一个周期的周期波上传播时所预期的。本文提供了孤子和呼吸子的渐近表达式,以揭示周期背景下的孤子和呼吸子动力学,从而确定了推导解的高精确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple solitons and breathers on periodic backgrounds in the complex modified Korteweg–de Vries equation

This study explores multiple soliton and breather solutions on periodic backgrounds in the complex modified Korteweg–de Vries equation. The compact determinant formulas and their detailed derivation process for these solutions are provided via the bilinear method. We confirm that on periodic backgrounds, soliton amplitudes exhibit regular periodic behaviors, while breather amplitudes display quasi-periodic behaviors, as is expected for a breather with one period propagating over a periodic wave with another period. The asymptotic expressions for the solitons and breathers, which establish the high accuracy of the derived solutions, are provided to reveal the soliton and breather dynamics on the periodic backgrounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信