{"title":"历史性多环境试验揭示了 1970 年至 2021 年得克萨斯州杂交谷物高粱的表现趋势","authors":"Fabian Leon, Lorin Harvey, William L. Rooney","doi":"10.1002/csc2.21343","DOIUrl":null,"url":null,"abstract":"<p>Sorghum (<i>Sorghum bicolor</i> [L. Moench]) is among the most important cereal crops worldwide and is widely grown across Texas’ diverse geographies. While sorghum breeding programs strive to improve both profitability and adaptation of the crop, increases in grain yield are the ultimate measure of progress. Using five decades of data compiled by Texas A&M AgriLife Research, trends in grain sorghum were retrospectively assessed. Performance data from over 4094 hybrids were collected between 1970 and 2021 in a total of 514 county-year environments. Hybrids in these trials were either commercially available or in the final stages of testing for release. A linear mixed model approach produced the best linear unbiased predictions of genotypic and environmental effects for grain yield and relevant agronomic traits. These measures, as well as the raw data, were used to inform and visualize trait dependencies, yield gains, and geographic regions with similar effects on hybrid performance. Over these decades, grain yield increased at an average rate of 0.03 t ha<sup>−1</sup> per year. A strong positive relationship between hybrid yield and plant height, as well as several other correlations, were detected through separate periods of yield increases which occurred in the early 1980s and 1990s; since that time, a sinusoidal pattern of yield performance has prevailed. Principal component analysis clustered production regions primarily based on moisture availability. The results herein indicate that modest increases in height can increase grain yield and that available moisture is the preeminent delineator of grain sorghum production environments in Texas.</p>","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":"64 6","pages":"3014-3027"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/csc2.21343","citationCount":"0","resultStr":"{\"title\":\"Historical multi-environmental trials reveal trends in hybrid grain sorghum performance from 1970 to 2021 in Texas\",\"authors\":\"Fabian Leon, Lorin Harvey, William L. Rooney\",\"doi\":\"10.1002/csc2.21343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sorghum (<i>Sorghum bicolor</i> [L. Moench]) is among the most important cereal crops worldwide and is widely grown across Texas’ diverse geographies. While sorghum breeding programs strive to improve both profitability and adaptation of the crop, increases in grain yield are the ultimate measure of progress. Using five decades of data compiled by Texas A&M AgriLife Research, trends in grain sorghum were retrospectively assessed. Performance data from over 4094 hybrids were collected between 1970 and 2021 in a total of 514 county-year environments. Hybrids in these trials were either commercially available or in the final stages of testing for release. A linear mixed model approach produced the best linear unbiased predictions of genotypic and environmental effects for grain yield and relevant agronomic traits. These measures, as well as the raw data, were used to inform and visualize trait dependencies, yield gains, and geographic regions with similar effects on hybrid performance. Over these decades, grain yield increased at an average rate of 0.03 t ha<sup>−1</sup> per year. A strong positive relationship between hybrid yield and plant height, as well as several other correlations, were detected through separate periods of yield increases which occurred in the early 1980s and 1990s; since that time, a sinusoidal pattern of yield performance has prevailed. Principal component analysis clustered production regions primarily based on moisture availability. The results herein indicate that modest increases in height can increase grain yield and that available moisture is the preeminent delineator of grain sorghum production environments in Texas.</p>\",\"PeriodicalId\":10849,\"journal\":{\"name\":\"Crop Science\",\"volume\":\"64 6\",\"pages\":\"3014-3027\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/csc2.21343\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/csc2.21343\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/csc2.21343","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Historical multi-environmental trials reveal trends in hybrid grain sorghum performance from 1970 to 2021 in Texas
Sorghum (Sorghum bicolor [L. Moench]) is among the most important cereal crops worldwide and is widely grown across Texas’ diverse geographies. While sorghum breeding programs strive to improve both profitability and adaptation of the crop, increases in grain yield are the ultimate measure of progress. Using five decades of data compiled by Texas A&M AgriLife Research, trends in grain sorghum were retrospectively assessed. Performance data from over 4094 hybrids were collected between 1970 and 2021 in a total of 514 county-year environments. Hybrids in these trials were either commercially available or in the final stages of testing for release. A linear mixed model approach produced the best linear unbiased predictions of genotypic and environmental effects for grain yield and relevant agronomic traits. These measures, as well as the raw data, were used to inform and visualize trait dependencies, yield gains, and geographic regions with similar effects on hybrid performance. Over these decades, grain yield increased at an average rate of 0.03 t ha−1 per year. A strong positive relationship between hybrid yield and plant height, as well as several other correlations, were detected through separate periods of yield increases which occurred in the early 1980s and 1990s; since that time, a sinusoidal pattern of yield performance has prevailed. Principal component analysis clustered production regions primarily based on moisture availability. The results herein indicate that modest increases in height can increase grain yield and that available moisture is the preeminent delineator of grain sorghum production environments in Texas.
期刊介绍:
Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.