Stefano Solarino , Marco G. Malusà , Elena Eva , Anne Paul , Stéphane Guillot , Silvia Pondrelli , Simone Salimbeni , Liang Zhao
{"title":"地震层析成像揭示了受上板块发散运动控制的俯冲通道和地幔楔形掘进的不同风格","authors":"Stefano Solarino , Marco G. Malusà , Elena Eva , Anne Paul , Stéphane Guillot , Silvia Pondrelli , Simone Salimbeni , Liang Zhao","doi":"10.1016/j.gr.2024.08.016","DOIUrl":null,"url":null,"abstract":"<div><p>In fossil subduction zones associated with massive exhumation of (ultra)high-pressure ((U)HP) rocks such as the Western Alps, the geometry and behavior of subduction-channel and mantle-wedge rocks during exhumation are still poorly constrained by independent geophysical observations. Here we use a new local earthquake tomography model of the entire fossil subduction zone of the Western Alps based on data collected during the CIFALPS and CIFALPS2 passive seismic experiments, and the first receiver-function profile across the Ligurian Alps, to investigate the styles of subduction-channel and mantle-wedge exhumation as a function of increasing upper-plate divergence motion. In the northern Western Alps (low divergence), a thickened subduction channel can be detected, but no exhumed mantle wedge is found beneath the Gran Paradiso (U)HP dome. In the southern Western Alps (intermediate divergence), an exhumed mantle wedge is detected beneath the Dora-Maira (U)HP dome above a serpentinized subduction channel. In the Ligurian Alps (high divergence), an exhumed mantle wedge and a former subduction channel are detected at much shallower levels beneath the Voltri-Valosio (U)HP dome, and above a shallow-dipping lower-plate Moho. In this latter case, the lower boundary of the exhumed subduction channel is the most evident seismic-velocity interface, which may be easily misinterpreted as a true Moho. Similar Moho-like interfaces are found beneath the exhumed (U)HP domes of eastern Papua New Guinea and the Dabie Shan, which suggests that the results of the CIFALPS experiments may be used as a reference case for the interpretation of other (U)HP terranes worldwide.</p></div>","PeriodicalId":12761,"journal":{"name":"Gondwana Research","volume":"136 ","pages":"Pages 169-182"},"PeriodicalIF":7.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1342937X2400265X/pdfft?md5=79ecd1a1ebbc58572cf9f5095084b118&pid=1-s2.0-S1342937X2400265X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Seismic tomography reveals contrasting styles of subduction-channel and mantle-wedge exhumation controlled by upper plate divergent motion\",\"authors\":\"Stefano Solarino , Marco G. Malusà , Elena Eva , Anne Paul , Stéphane Guillot , Silvia Pondrelli , Simone Salimbeni , Liang Zhao\",\"doi\":\"10.1016/j.gr.2024.08.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In fossil subduction zones associated with massive exhumation of (ultra)high-pressure ((U)HP) rocks such as the Western Alps, the geometry and behavior of subduction-channel and mantle-wedge rocks during exhumation are still poorly constrained by independent geophysical observations. Here we use a new local earthquake tomography model of the entire fossil subduction zone of the Western Alps based on data collected during the CIFALPS and CIFALPS2 passive seismic experiments, and the first receiver-function profile across the Ligurian Alps, to investigate the styles of subduction-channel and mantle-wedge exhumation as a function of increasing upper-plate divergence motion. In the northern Western Alps (low divergence), a thickened subduction channel can be detected, but no exhumed mantle wedge is found beneath the Gran Paradiso (U)HP dome. In the southern Western Alps (intermediate divergence), an exhumed mantle wedge is detected beneath the Dora-Maira (U)HP dome above a serpentinized subduction channel. In the Ligurian Alps (high divergence), an exhumed mantle wedge and a former subduction channel are detected at much shallower levels beneath the Voltri-Valosio (U)HP dome, and above a shallow-dipping lower-plate Moho. In this latter case, the lower boundary of the exhumed subduction channel is the most evident seismic-velocity interface, which may be easily misinterpreted as a true Moho. Similar Moho-like interfaces are found beneath the exhumed (U)HP domes of eastern Papua New Guinea and the Dabie Shan, which suggests that the results of the CIFALPS experiments may be used as a reference case for the interpretation of other (U)HP terranes worldwide.</p></div>\",\"PeriodicalId\":12761,\"journal\":{\"name\":\"Gondwana Research\",\"volume\":\"136 \",\"pages\":\"Pages 169-182\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1342937X2400265X/pdfft?md5=79ecd1a1ebbc58572cf9f5095084b118&pid=1-s2.0-S1342937X2400265X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gondwana Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1342937X2400265X\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gondwana Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1342937X2400265X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Seismic tomography reveals contrasting styles of subduction-channel and mantle-wedge exhumation controlled by upper plate divergent motion
In fossil subduction zones associated with massive exhumation of (ultra)high-pressure ((U)HP) rocks such as the Western Alps, the geometry and behavior of subduction-channel and mantle-wedge rocks during exhumation are still poorly constrained by independent geophysical observations. Here we use a new local earthquake tomography model of the entire fossil subduction zone of the Western Alps based on data collected during the CIFALPS and CIFALPS2 passive seismic experiments, and the first receiver-function profile across the Ligurian Alps, to investigate the styles of subduction-channel and mantle-wedge exhumation as a function of increasing upper-plate divergence motion. In the northern Western Alps (low divergence), a thickened subduction channel can be detected, but no exhumed mantle wedge is found beneath the Gran Paradiso (U)HP dome. In the southern Western Alps (intermediate divergence), an exhumed mantle wedge is detected beneath the Dora-Maira (U)HP dome above a serpentinized subduction channel. In the Ligurian Alps (high divergence), an exhumed mantle wedge and a former subduction channel are detected at much shallower levels beneath the Voltri-Valosio (U)HP dome, and above a shallow-dipping lower-plate Moho. In this latter case, the lower boundary of the exhumed subduction channel is the most evident seismic-velocity interface, which may be easily misinterpreted as a true Moho. Similar Moho-like interfaces are found beneath the exhumed (U)HP domes of eastern Papua New Guinea and the Dabie Shan, which suggests that the results of the CIFALPS experiments may be used as a reference case for the interpretation of other (U)HP terranes worldwide.
期刊介绍:
Gondwana Research (GR) is an International Journal aimed to promote high quality research publications on all topics related to solid Earth, particularly with reference to the origin and evolution of continents, continental assemblies and their resources. GR is an "all earth science" journal with no restrictions on geological time, terrane or theme and covers a wide spectrum of topics in geosciences such as geology, geomorphology, palaeontology, structure, petrology, geochemistry, stable isotopes, geochronology, economic geology, exploration geology, engineering geology, geophysics, and environmental geology among other themes, and provides an appropriate forum to integrate studies from different disciplines and different terrains. In addition to regular articles and thematic issues, the journal invites high profile state-of-the-art reviews on thrust area topics for its column, ''GR FOCUS''. Focus articles include short biographies and photographs of the authors. Short articles (within ten printed pages) for rapid publication reporting important discoveries or innovative models of global interest will be considered under the category ''GR LETTERS''.