虚拟辫状群的特征子群和 R∞ 属性

IF 0.8 2区 数学 Q2 MATHEMATICS
Karel Dekimpe , Daciberg Lima Gonçalves , Oscar Ocampo
{"title":"虚拟辫状群的特征子群和 R∞ 属性","authors":"Karel Dekimpe ,&nbsp;Daciberg Lima Gonçalves ,&nbsp;Oscar Ocampo","doi":"10.1016/j.jalgebra.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>. Let <span><math><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (resp. <span><math><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) denote the virtual braid group (resp. virtual pure braid group), let <span><math><mi>W</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (resp. <span><math><mi>W</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) denote the welded braid group (resp. welded pure braid group) and let <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (resp. <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) denote the unrestricted virtual braid group (resp. unrestricted virtual pure braid group). In the first part of this paper we prove that, for <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, the group <span><math><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> the groups <span><math><mi>W</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are characteristic subgroups of <span><math><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><mi>W</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, respectively. In the second part of the paper we show that, for <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, the virtual braid group <span><math><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the unrestricted virtual pure braid group <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and the unrestricted virtual braid group <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> have the R<sub>∞</sub>-property. As a consequence of the technique used for few strings we also prove that, for <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span>, the welded braid group <span><math><mi>W</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> has the R<sub>∞</sub>-property and that for <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span> the corresponding pure braid groups have the R<sub>∞</sub>-property. On the other hand for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> it is unknown if the R<sub>∞</sub>-property holds or not for the virtual pure braid group <span><math><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the welded pure braid group <span><math><mi>W</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristic subgroups and the R∞-property for virtual braid groups\",\"authors\":\"Karel Dekimpe ,&nbsp;Daciberg Lima Gonçalves ,&nbsp;Oscar Ocampo\",\"doi\":\"10.1016/j.jalgebra.2024.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>. Let <span><math><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (resp. <span><math><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) denote the virtual braid group (resp. virtual pure braid group), let <span><math><mi>W</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (resp. <span><math><mi>W</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) denote the welded braid group (resp. welded pure braid group) and let <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (resp. <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) denote the unrestricted virtual braid group (resp. unrestricted virtual pure braid group). In the first part of this paper we prove that, for <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, the group <span><math><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> the groups <span><math><mi>W</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are characteristic subgroups of <span><math><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><mi>W</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, respectively. In the second part of the paper we show that, for <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, the virtual braid group <span><math><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the unrestricted virtual pure braid group <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and the unrestricted virtual braid group <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> have the R<sub>∞</sub>-property. As a consequence of the technique used for few strings we also prove that, for <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span>, the welded braid group <span><math><mi>W</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> has the R<sub>∞</sub>-property and that for <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span> the corresponding pure braid groups have the R<sub>∞</sub>-property. On the other hand for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> it is unknown if the R<sub>∞</sub>-property holds or not for the virtual pure braid group <span><math><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the welded pure braid group <span><math><mi>W</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</p></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324004897\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004897","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 n≥2。让 VBn(或 VPn)表示虚辫群(或虚纯辫群),让 WBn(或 WPn)表示焊接辫群(或焊接纯辫群),让 UVBn(或 UVPn)表示无限制虚辫群(或无限制虚纯辫群)。在本文的第一部分,我们将证明,对于 n≥4,群 VPn,对于 n≥3,群 WPn 和 UVPn 分别是 VBn、WBn 和 UVBn 的特征子群。在论文的第二部分,我们证明了在 n≥2 时,虚辫群 VBn、无限制虚纯辫群 UVPn 和无限制虚辫群 UVBn 具有 R∞ 属性。作为对少数弦使用的技术的结果,我们还证明,对于 n=2、3、4,焊接辫状群 WBn 具有 R∞属性,对于 n=2,相应的纯辫状群具有 R∞属性。另一方面,当 n≥3 时,虚拟纯辫状群 VPn 和焊接纯辫状群 WPn 的 R∞ 属性是否成立还是未知数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characteristic subgroups and the R∞-property for virtual braid groups

Let n2. Let VBn (resp. VPn) denote the virtual braid group (resp. virtual pure braid group), let WBn (resp. WPn) denote the welded braid group (resp. welded pure braid group) and let UVBn (resp. UVPn) denote the unrestricted virtual braid group (resp. unrestricted virtual pure braid group). In the first part of this paper we prove that, for n4, the group VPn and for n3 the groups WPn and UVPn are characteristic subgroups of VBn, WBn and UVBn, respectively. In the second part of the paper we show that, for n2, the virtual braid group VBn, the unrestricted virtual pure braid group UVPn, and the unrestricted virtual braid group UVBn have the R-property. As a consequence of the technique used for few strings we also prove that, for n=2,3,4, the welded braid group WBn has the R-property and that for n=2 the corresponding pure braid groups have the R-property. On the other hand for n3 it is unknown if the R-property holds or not for the virtual pure braid group VPn and the welded pure braid group WPn.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信