Karel Dekimpe , Daciberg Lima Gonçalves , Oscar Ocampo
{"title":"虚拟辫状群的特征子群和 R∞ 属性","authors":"Karel Dekimpe , Daciberg Lima Gonçalves , Oscar Ocampo","doi":"10.1016/j.jalgebra.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>. Let <span><math><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (resp. <span><math><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) denote the virtual braid group (resp. virtual pure braid group), let <span><math><mi>W</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (resp. <span><math><mi>W</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) denote the welded braid group (resp. welded pure braid group) and let <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (resp. <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) denote the unrestricted virtual braid group (resp. unrestricted virtual pure braid group). In the first part of this paper we prove that, for <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, the group <span><math><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> the groups <span><math><mi>W</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are characteristic subgroups of <span><math><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><mi>W</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, respectively. In the second part of the paper we show that, for <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, the virtual braid group <span><math><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the unrestricted virtual pure braid group <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and the unrestricted virtual braid group <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> have the R<sub>∞</sub>-property. As a consequence of the technique used for few strings we also prove that, for <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span>, the welded braid group <span><math><mi>W</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> has the R<sub>∞</sub>-property and that for <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span> the corresponding pure braid groups have the R<sub>∞</sub>-property. On the other hand for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> it is unknown if the R<sub>∞</sub>-property holds or not for the virtual pure braid group <span><math><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the welded pure braid group <span><math><mi>W</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristic subgroups and the R∞-property for virtual braid groups\",\"authors\":\"Karel Dekimpe , Daciberg Lima Gonçalves , Oscar Ocampo\",\"doi\":\"10.1016/j.jalgebra.2024.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>. Let <span><math><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (resp. <span><math><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) denote the virtual braid group (resp. virtual pure braid group), let <span><math><mi>W</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (resp. <span><math><mi>W</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) denote the welded braid group (resp. welded pure braid group) and let <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (resp. <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) denote the unrestricted virtual braid group (resp. unrestricted virtual pure braid group). In the first part of this paper we prove that, for <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, the group <span><math><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> the groups <span><math><mi>W</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are characteristic subgroups of <span><math><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><mi>W</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, respectively. In the second part of the paper we show that, for <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, the virtual braid group <span><math><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the unrestricted virtual pure braid group <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and the unrestricted virtual braid group <span><math><mi>U</mi><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> have the R<sub>∞</sub>-property. As a consequence of the technique used for few strings we also prove that, for <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span>, the welded braid group <span><math><mi>W</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> has the R<sub>∞</sub>-property and that for <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span> the corresponding pure braid groups have the R<sub>∞</sub>-property. On the other hand for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> it is unknown if the R<sub>∞</sub>-property holds or not for the virtual pure braid group <span><math><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the welded pure braid group <span><math><mi>W</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</p></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324004897\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004897","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Characteristic subgroups and the R∞-property for virtual braid groups
Let . Let (resp. ) denote the virtual braid group (resp. virtual pure braid group), let (resp. ) denote the welded braid group (resp. welded pure braid group) and let (resp. ) denote the unrestricted virtual braid group (resp. unrestricted virtual pure braid group). In the first part of this paper we prove that, for , the group and for the groups and are characteristic subgroups of , and , respectively. In the second part of the paper we show that, for , the virtual braid group , the unrestricted virtual pure braid group , and the unrestricted virtual braid group have the R∞-property. As a consequence of the technique used for few strings we also prove that, for , the welded braid group has the R∞-property and that for the corresponding pure braid groups have the R∞-property. On the other hand for it is unknown if the R∞-property holds or not for the virtual pure braid group and the welded pure braid group .
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.