描述有/无逻辑源的肿瘤血管生成的准线性趋化模型解的大时间特性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Min Xiao , Jie Zhao , Qiurong He
{"title":"描述有/无逻辑源的肿瘤血管生成的准线性趋化模型解的大时间特性","authors":"Min Xiao ,&nbsp;Jie Zhao ,&nbsp;Qiurong He","doi":"10.1016/j.nonrwa.2024.104214","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we deal with the following Neumann-initial boundary value problem for a quasilinear chemotaxis model describing tumor angiogenesis: <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>ξ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><mi>μ</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>v</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mi>∂</mi><mi>u</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>v</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>w</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>∂</mi><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>in a bounded smooth domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>≤</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>, where the parameter <span><math><mrow><mi>χ</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>ξ</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>μ</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> is supposed to satisfy the behind property <span><span><span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≥</mo><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><mspace></mspace><mspace></mspace><mspace></mspace><mtext>with</mtext><mspace></mspace><mspace></mspace><mspace></mspace><mi>α</mi><mo>&gt;</mo><mn>0</mn><mo>.</mo></mrow></math></span></span></span>Assume that either <span><math><mrow><mi>μ</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>α</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> or <span><math><mrow><mi>μ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>ξ</mi><mo>≥</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where the parameter <span><math><mrow><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>=</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span>, then the system admits a global classical solution <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span> by subtle energy estimates. Moreover, when <span><math><mrow><mi>μ</mi><mo>=</mo><mn>0</mn></mrow></math></span>, it is asserted that the corresponding solution exponentially converges to the constant stationary solution <span><math><mrow><mo>(</mo><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>,</mo><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>,</mo><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>)</mo></mrow></math></span> provided the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is sufficiently small, where <span><math><mrow><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>=</mo><mfrac><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac></mrow></math></span>. Finally, when <span><math><mrow><mi>μ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, it can be proved that the corresponding solution of the system decays to <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> exponentially for suitable large <span><math><mi>μ</mi></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large time behavior of solution to a quasilinear chemotaxis model describing tumor angiogenesis with/without logistic source\",\"authors\":\"Min Xiao ,&nbsp;Jie Zhao ,&nbsp;Qiurong He\",\"doi\":\"10.1016/j.nonrwa.2024.104214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we deal with the following Neumann-initial boundary value problem for a quasilinear chemotaxis model describing tumor angiogenesis: <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>ξ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><mi>μ</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>v</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mi>∂</mi><mi>u</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>v</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>w</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>∂</mi><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>in a bounded smooth domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>≤</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>, where the parameter <span><math><mrow><mi>χ</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>ξ</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>μ</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> is supposed to satisfy the behind property <span><span><span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≥</mo><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><mspace></mspace><mspace></mspace><mspace></mspace><mtext>with</mtext><mspace></mspace><mspace></mspace><mspace></mspace><mi>α</mi><mo>&gt;</mo><mn>0</mn><mo>.</mo></mrow></math></span></span></span>Assume that either <span><math><mrow><mi>μ</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>α</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> or <span><math><mrow><mi>μ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>ξ</mi><mo>≥</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where the parameter <span><math><mrow><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>=</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span>, then the system admits a global classical solution <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span> by subtle energy estimates. Moreover, when <span><math><mrow><mi>μ</mi><mo>=</mo><mn>0</mn></mrow></math></span>, it is asserted that the corresponding solution exponentially converges to the constant stationary solution <span><math><mrow><mo>(</mo><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>,</mo><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>,</mo><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>)</mo></mrow></math></span> provided the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is sufficiently small, where <span><math><mrow><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>=</mo><mfrac><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac></mrow></math></span>. Finally, when <span><math><mrow><mi>μ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, it can be proved that the corresponding solution of the system decays to <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> exponentially for suitable large <span><math><mi>μ</mi></math></span>.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001536\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001536","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们处理了以下描述肿瘤血管生成的准线性趋化模型的诺伊曼初始边界值问题:ut=∇⋅(D(u)∇u)-χ∇⋅(u∇v)+ξ∇⋅(u∇w)+μu-μu2,x∈Ω,t>0,vt=Δv+∇⋅(v∇w)-v+u,x∈Ω,t>0,0=Δw-w+u,x∈Ω,t>0,∂u∂ν=∂v∂ν=∂w∂ν=0,x∈∂Ω,t>;0,u(x,0)=u0(x),v(x,0)=v0(x),x∈Ω,在有界光滑域Ω⊂Rn(n≤3)中,其中参数χ,ξ>0,μ≥0,D(u)理应满足后面的性质D(u)≥(u+1)αwithα>0。假设μ≥0,α>1或μ=0,ξ≥λ1∗χ2,其中参数λ1∗=λ1∗(u0,v0,Ω)>0,则通过微妙的能量估计,系统接纳一个全局经典解(u,v,w)。此外,当 μ=0 时,可以断言,只要初始数据 u0 足够小,相应的解就会指数收敛到恒定静止解 (u0¯,u0¯,u0¯),其中 u0¯=∫Ωu0|Ω| 。最后,当μ>0 时,可以证明系统的相应解在合适的大μ下指数衰减到(1,1,1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large time behavior of solution to a quasilinear chemotaxis model describing tumor angiogenesis with/without logistic source

In this paper, we deal with the following Neumann-initial boundary value problem for a quasilinear chemotaxis model describing tumor angiogenesis: ut=(D(u)u)χ(uv)+ξ(uw)+μuμu2,xΩ,t>0,vt=Δv+(vw)v+u,xΩ,t>0,0=Δww+u,xΩ,t>0,uν=vν=wν=0,xΩ,t>0,u(x,0)=u0(x),v(x,0)=v0(x),xΩ,in a bounded smooth domain ΩRn(n3), where the parameter χ,ξ>0,μ0, D(u) is supposed to satisfy the behind property D(u)(u+1)αwithα>0.Assume that either μ0,α>1 or μ=0,ξλ1χ2, where the parameter λ1=λ1(u0,v0,Ω)>0, then the system admits a global classical solution (u,v,w) by subtle energy estimates. Moreover, when μ=0, it is asserted that the corresponding solution exponentially converges to the constant stationary solution (u0¯,u0¯,u0¯) provided the initial data u0 is sufficiently small, where u0¯=Ωu0|Ω|. Finally, when μ>0, it can be proved that the corresponding solution of the system decays to (1,1,1) exponentially for suitable large μ.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信