{"title":"描述有/无逻辑源的肿瘤血管生成的准线性趋化模型解的大时间特性","authors":"Min Xiao , Jie Zhao , Qiurong He","doi":"10.1016/j.nonrwa.2024.104214","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we deal with the following Neumann-initial boundary value problem for a quasilinear chemotaxis model describing tumor angiogenesis: <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>ξ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><mi>μ</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>v</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mi>∂</mi><mi>u</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>v</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>w</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>∂</mi><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>in a bounded smooth domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>≤</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>, where the parameter <span><math><mrow><mi>χ</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>ξ</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>μ</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> is supposed to satisfy the behind property <span><span><span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≥</mo><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><mspace></mspace><mspace></mspace><mspace></mspace><mtext>with</mtext><mspace></mspace><mspace></mspace><mspace></mspace><mi>α</mi><mo>></mo><mn>0</mn><mo>.</mo></mrow></math></span></span></span>Assume that either <span><math><mrow><mi>μ</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>α</mi><mo>></mo><mn>1</mn></mrow></math></span> or <span><math><mrow><mi>μ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>ξ</mi><mo>≥</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where the parameter <span><math><mrow><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>=</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span>, then the system admits a global classical solution <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span> by subtle energy estimates. Moreover, when <span><math><mrow><mi>μ</mi><mo>=</mo><mn>0</mn></mrow></math></span>, it is asserted that the corresponding solution exponentially converges to the constant stationary solution <span><math><mrow><mo>(</mo><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>,</mo><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>,</mo><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>)</mo></mrow></math></span> provided the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is sufficiently small, where <span><math><mrow><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>=</mo><mfrac><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac></mrow></math></span>. Finally, when <span><math><mrow><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span>, it can be proved that the corresponding solution of the system decays to <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> exponentially for suitable large <span><math><mi>μ</mi></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large time behavior of solution to a quasilinear chemotaxis model describing tumor angiogenesis with/without logistic source\",\"authors\":\"Min Xiao , Jie Zhao , Qiurong He\",\"doi\":\"10.1016/j.nonrwa.2024.104214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we deal with the following Neumann-initial boundary value problem for a quasilinear chemotaxis model describing tumor angiogenesis: <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>ξ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><mi>μ</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>v</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mi>∂</mi><mi>u</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>v</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>w</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>∂</mi><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>in a bounded smooth domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>≤</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>, where the parameter <span><math><mrow><mi>χ</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>ξ</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>μ</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> is supposed to satisfy the behind property <span><span><span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≥</mo><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><mspace></mspace><mspace></mspace><mspace></mspace><mtext>with</mtext><mspace></mspace><mspace></mspace><mspace></mspace><mi>α</mi><mo>></mo><mn>0</mn><mo>.</mo></mrow></math></span></span></span>Assume that either <span><math><mrow><mi>μ</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>α</mi><mo>></mo><mn>1</mn></mrow></math></span> or <span><math><mrow><mi>μ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>ξ</mi><mo>≥</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where the parameter <span><math><mrow><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>=</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span>, then the system admits a global classical solution <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></math></span> by subtle energy estimates. Moreover, when <span><math><mrow><mi>μ</mi><mo>=</mo><mn>0</mn></mrow></math></span>, it is asserted that the corresponding solution exponentially converges to the constant stationary solution <span><math><mrow><mo>(</mo><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>,</mo><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>,</mo><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>)</mo></mrow></math></span> provided the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is sufficiently small, where <span><math><mrow><mover><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>=</mo><mfrac><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac></mrow></math></span>. Finally, when <span><math><mrow><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span>, it can be proved that the corresponding solution of the system decays to <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> exponentially for suitable large <span><math><mi>μ</mi></math></span>.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001536\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001536","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Large time behavior of solution to a quasilinear chemotaxis model describing tumor angiogenesis with/without logistic source
In this paper, we deal with the following Neumann-initial boundary value problem for a quasilinear chemotaxis model describing tumor angiogenesis: in a bounded smooth domain , where the parameter , is supposed to satisfy the behind property Assume that either or , where the parameter , then the system admits a global classical solution by subtle energy estimates. Moreover, when , it is asserted that the corresponding solution exponentially converges to the constant stationary solution provided the initial data is sufficiently small, where . Finally, when , it can be proved that the corresponding solution of the system decays to exponentially for suitable large .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.