平面斯威夫特-霍恩伯格 PDE 中的静止非径向局部模式:存在的构造性证明

IF 2.4 2区 数学 Q1 MATHEMATICS
Matthieu Cadiot, Jean-Philippe Lessard, Jean-Christophe Nave
{"title":"平面斯威夫特-霍恩伯格 PDE 中的静止非径向局部模式:存在的构造性证明","authors":"Matthieu Cadiot,&nbsp;Jean-Philippe Lessard,&nbsp;Jean-Christophe Nave","doi":"10.1016/j.jde.2024.09.015","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a methodology for establishing constructive proofs of existence of smooth, stationary, non-radial localized patterns in the planar Swift-Hohenberg equation. Specifically, given an approximate solution <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, we construct an approximate inverse for the linearization around <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, enabling the development of a Newton-Kantorovich approach. Consequently, we derive a sufficient condition for the existence of a unique localized pattern in the vicinity of <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. The verification of this condition is facilitated through a combination of analytic techniques and rigorous numerical computations. Moreover, an additional condition is derived, establishing that the localized pattern serves as the limit of a family of periodic solutions (in space) as the period tends to infinity. The integration of analytical tools and meticulous numerical analysis ensures a comprehensive validation of this condition. To illustrate the efficacy of the proposed methodology, we present computer-assisted proofs for the existence of three distinct unbounded branches of periodic solutions in the planar Swift-Hohenberg equation, all converging towards a localized planar pattern, whose existence is also proven constructively. All computer-assisted proofs, including the requisite codes, are accessible on GitHub at <span><span>[1]</span></span>.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stationary non-radial localized patterns in the planar Swift-Hohenberg PDE: Constructive proofs of existence\",\"authors\":\"Matthieu Cadiot,&nbsp;Jean-Philippe Lessard,&nbsp;Jean-Christophe Nave\",\"doi\":\"10.1016/j.jde.2024.09.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present a methodology for establishing constructive proofs of existence of smooth, stationary, non-radial localized patterns in the planar Swift-Hohenberg equation. Specifically, given an approximate solution <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, we construct an approximate inverse for the linearization around <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, enabling the development of a Newton-Kantorovich approach. Consequently, we derive a sufficient condition for the existence of a unique localized pattern in the vicinity of <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. The verification of this condition is facilitated through a combination of analytic techniques and rigorous numerical computations. Moreover, an additional condition is derived, establishing that the localized pattern serves as the limit of a family of periodic solutions (in space) as the period tends to infinity. The integration of analytical tools and meticulous numerical analysis ensures a comprehensive validation of this condition. To illustrate the efficacy of the proposed methodology, we present computer-assisted proofs for the existence of three distinct unbounded branches of periodic solutions in the planar Swift-Hohenberg equation, all converging towards a localized planar pattern, whose existence is also proven constructively. All computer-assisted proofs, including the requisite codes, are accessible on GitHub at <span><span>[1]</span></span>.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624005941\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005941","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种方法,用于建立平面斯威夫特-霍恩伯格方程中光滑、静止、非径向局部模式存在性的构造性证明。具体来说,在给定近似解 u0 的情况下,我们构建了 u0 周围线性化的近似逆,从而发展出一种牛顿-康托洛维奇(Newton-Kantorovich)方法。因此,我们得出了在 u0 附近存在唯一局部模式的充分条件。分析技术和严格的数值计算相结合,有助于验证这一条件。此外,我们还推导出一个附加条件,即当周期趋于无穷大时,局部模式是周期解(空间)族的极限。分析工具与细致的数值分析相结合,确保了对这一条件的全面验证。为了说明所提方法的有效性,我们提出了平面斯威夫特-霍恩伯格方程中三个不同的无界周期解分支的计算机辅助证明,它们都向一个局部平面图案收敛,其存在性也得到了构造性证明。所有计算机辅助证明,包括必要的代码,都可以在 GitHub 上访问 [1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stationary non-radial localized patterns in the planar Swift-Hohenberg PDE: Constructive proofs of existence

In this paper, we present a methodology for establishing constructive proofs of existence of smooth, stationary, non-radial localized patterns in the planar Swift-Hohenberg equation. Specifically, given an approximate solution u0, we construct an approximate inverse for the linearization around u0, enabling the development of a Newton-Kantorovich approach. Consequently, we derive a sufficient condition for the existence of a unique localized pattern in the vicinity of u0. The verification of this condition is facilitated through a combination of analytic techniques and rigorous numerical computations. Moreover, an additional condition is derived, establishing that the localized pattern serves as the limit of a family of periodic solutions (in space) as the period tends to infinity. The integration of analytical tools and meticulous numerical analysis ensures a comprehensive validation of this condition. To illustrate the efficacy of the proposed methodology, we present computer-assisted proofs for the existence of three distinct unbounded branches of periodic solutions in the planar Swift-Hohenberg equation, all converging towards a localized planar pattern, whose existence is also proven constructively. All computer-assisted proofs, including the requisite codes, are accessible on GitHub at [1].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信