{"title":"液态金属气泡柱反应器中的太阳能甲烷热解:介质类型和气体注入配置的影响","authors":"Malek Msheik, Sylvain Rodat, Stéphane Abanades","doi":"10.1016/j.jaap.2024.106756","DOIUrl":null,"url":null,"abstract":"<div><p>Solar methane pyrolysis in different molten media and reactor configurations was experimented to improve hydrogen production. Pure Sn, Ni<sub>0.18</sub>Sn<sub>0.82</sub>, Cu<sub>0.45</sub>Bi<sub>0.55</sub>, and KCl melts were compared at three different temperatures (1030–1130–1230 °C), and no significant difference was observed except for KCl and only at 1230 °C (X<sub>CH4</sub> = 72 % vs. 57 % for pure Sn). This enhanced performance was attributed to possible carbon dispersion in the salt, which probably modified the physical properties and enhanced hydrodynamics. A porous quartz sparger (downward injection) did not significantly enhance the bubbles hydrodynamics, mainly because bubbles were trapped and coalesced below the sintered disc. A custom-made sparger (lateral bubbling) did not either improve conversion due to non-uniform pores. A sparger with an upward injection should be preferred to generate small bubbles with longer residence time. When a solid bed of tungsten carbide particles was placed around the injector, overlaid by molten tin, the conversion was improved even at a relatively low temperature (X<sub>CH4</sub> = 17 % at 1030 °C). The immersed bed likely behaved as a porous device and increased the gas-solid surface contact. Combining particle bed and liquid bubbling system is very promising for further optimization of methane pyrolysis in molten media. The carbon collected above molten metals showed mostly a sheet-like structure with significant metal contamination. In case of KCl, most carbon was entrained with the gas, while the remaining was mixed with KCl in the reactor. The density of KCl is close to that of carbon, which prevented a good separation.</p></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"183 ","pages":"Article 106756"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016523702400411X/pdfft?md5=362ad960a90aa8e28ebd5c535e798d94&pid=1-s2.0-S016523702400411X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Solar methane pyrolysis in a liquid metal bubble column reactor: Effect of medium type and gas injection configuration\",\"authors\":\"Malek Msheik, Sylvain Rodat, Stéphane Abanades\",\"doi\":\"10.1016/j.jaap.2024.106756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solar methane pyrolysis in different molten media and reactor configurations was experimented to improve hydrogen production. Pure Sn, Ni<sub>0.18</sub>Sn<sub>0.82</sub>, Cu<sub>0.45</sub>Bi<sub>0.55</sub>, and KCl melts were compared at three different temperatures (1030–1130–1230 °C), and no significant difference was observed except for KCl and only at 1230 °C (X<sub>CH4</sub> = 72 % vs. 57 % for pure Sn). This enhanced performance was attributed to possible carbon dispersion in the salt, which probably modified the physical properties and enhanced hydrodynamics. A porous quartz sparger (downward injection) did not significantly enhance the bubbles hydrodynamics, mainly because bubbles were trapped and coalesced below the sintered disc. A custom-made sparger (lateral bubbling) did not either improve conversion due to non-uniform pores. A sparger with an upward injection should be preferred to generate small bubbles with longer residence time. When a solid bed of tungsten carbide particles was placed around the injector, overlaid by molten tin, the conversion was improved even at a relatively low temperature (X<sub>CH4</sub> = 17 % at 1030 °C). The immersed bed likely behaved as a porous device and increased the gas-solid surface contact. Combining particle bed and liquid bubbling system is very promising for further optimization of methane pyrolysis in molten media. The carbon collected above molten metals showed mostly a sheet-like structure with significant metal contamination. In case of KCl, most carbon was entrained with the gas, while the remaining was mixed with KCl in the reactor. The density of KCl is close to that of carbon, which prevented a good separation.</p></div>\",\"PeriodicalId\":345,\"journal\":{\"name\":\"Journal of Analytical and Applied Pyrolysis\",\"volume\":\"183 \",\"pages\":\"Article 106756\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016523702400411X/pdfft?md5=362ad960a90aa8e28ebd5c535e798d94&pid=1-s2.0-S016523702400411X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical and Applied Pyrolysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016523702400411X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016523702400411X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Solar methane pyrolysis in a liquid metal bubble column reactor: Effect of medium type and gas injection configuration
Solar methane pyrolysis in different molten media and reactor configurations was experimented to improve hydrogen production. Pure Sn, Ni0.18Sn0.82, Cu0.45Bi0.55, and KCl melts were compared at three different temperatures (1030–1130–1230 °C), and no significant difference was observed except for KCl and only at 1230 °C (XCH4 = 72 % vs. 57 % for pure Sn). This enhanced performance was attributed to possible carbon dispersion in the salt, which probably modified the physical properties and enhanced hydrodynamics. A porous quartz sparger (downward injection) did not significantly enhance the bubbles hydrodynamics, mainly because bubbles were trapped and coalesced below the sintered disc. A custom-made sparger (lateral bubbling) did not either improve conversion due to non-uniform pores. A sparger with an upward injection should be preferred to generate small bubbles with longer residence time. When a solid bed of tungsten carbide particles was placed around the injector, overlaid by molten tin, the conversion was improved even at a relatively low temperature (XCH4 = 17 % at 1030 °C). The immersed bed likely behaved as a porous device and increased the gas-solid surface contact. Combining particle bed and liquid bubbling system is very promising for further optimization of methane pyrolysis in molten media. The carbon collected above molten metals showed mostly a sheet-like structure with significant metal contamination. In case of KCl, most carbon was entrained with the gas, while the remaining was mixed with KCl in the reactor. The density of KCl is close to that of carbon, which prevented a good separation.
期刊介绍:
The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.