大鼠接触草甘膦或草甘膦类除草剂后子宫白血病抑制因子基因的表观遗传学改变

IF 4.2 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Ailín Almirón , Virginia Lorenz , Florencia Doná , Jorgelina Varayoud , María Mercedes Milesi
{"title":"大鼠接触草甘膦或草甘膦类除草剂后子宫白血病抑制因子基因的表观遗传学改变","authors":"Ailín Almirón ,&nbsp;Virginia Lorenz ,&nbsp;Florencia Doná ,&nbsp;Jorgelina Varayoud ,&nbsp;María Mercedes Milesi","doi":"10.1016/j.etap.2024.104564","DOIUrl":null,"url":null,"abstract":"<div><p>Glyphosate-based herbicides (GBHs) or its active ingredient, glyphosate (Gly), induce implantation failure in rats. We aimed to elucidate a mechanism of action of these compounds assessing the transcriptional and epigenetic status of the receptivity marker, leukemia inhibitory factor (<em>Lif</em>) gene. F0 rats were orally exposed to GBH or Gly at 3.8 or 3.9 mg Gly/kg/day, respectively, from gestational day (GD) 9 until weaning. F1 females were mated and uterine samples collected at GD5. Methylation-sensitive restriction enzymes (MSRE) sites and transcription factors were <em>in silico</em> predicted in regulatory regions of <em>Lif</em> gene. DNA methylation status and histone modifications (histone 3 and 4 acetylation (H3Ac and H4Ac) and H3 lysine-27-trimethylation (H3K27me3)) were assessed. GBH and Gly decreased <em>Lif</em> mRNA levels and caused DNA hypermethylation. GBH increased H3Ac levels, whereas Gly reduced them; both compounds enhanced H3K27me3 levels. Finally, both GBH and Gly induced similar epigenetic alterations in the regulatory regions of <em>Lif</em>.</p></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":"111 ","pages":"Article 104564"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epigenetic alteration of uterine Leukemia Inhibitory Factor gene after glyphosate or a glyphosate-based herbicide exposure in rats\",\"authors\":\"Ailín Almirón ,&nbsp;Virginia Lorenz ,&nbsp;Florencia Doná ,&nbsp;Jorgelina Varayoud ,&nbsp;María Mercedes Milesi\",\"doi\":\"10.1016/j.etap.2024.104564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Glyphosate-based herbicides (GBHs) or its active ingredient, glyphosate (Gly), induce implantation failure in rats. We aimed to elucidate a mechanism of action of these compounds assessing the transcriptional and epigenetic status of the receptivity marker, leukemia inhibitory factor (<em>Lif</em>) gene. F0 rats were orally exposed to GBH or Gly at 3.8 or 3.9 mg Gly/kg/day, respectively, from gestational day (GD) 9 until weaning. F1 females were mated and uterine samples collected at GD5. Methylation-sensitive restriction enzymes (MSRE) sites and transcription factors were <em>in silico</em> predicted in regulatory regions of <em>Lif</em> gene. DNA methylation status and histone modifications (histone 3 and 4 acetylation (H3Ac and H4Ac) and H3 lysine-27-trimethylation (H3K27me3)) were assessed. GBH and Gly decreased <em>Lif</em> mRNA levels and caused DNA hypermethylation. GBH increased H3Ac levels, whereas Gly reduced them; both compounds enhanced H3K27me3 levels. Finally, both GBH and Gly induced similar epigenetic alterations in the regulatory regions of <em>Lif</em>.</p></div>\",\"PeriodicalId\":11775,\"journal\":{\"name\":\"Environmental toxicology and pharmacology\",\"volume\":\"111 \",\"pages\":\"Article 104564\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental toxicology and pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1382668924002047\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental toxicology and pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1382668924002047","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

草甘膦类除草剂(GBHs)或其活性成分草甘膦(Gly)会导致大鼠植入失败。我们的目的是通过评估受孕标志物白血病抑制因子(Lif)基因的转录和表观遗传状态来阐明这些化合物的作用机制。从妊娠日(GD)9开始,F0大鼠口服GBH或Gly,剂量分别为3.8或3.9毫克Gly/公斤/天,直至断奶。F1 雌鼠交配并在 GD5 时采集子宫样本。对 Lif 基因调控区的甲基化敏感限制酶(MSRE)位点和转录因子进行了硅预测。对DNA甲基化状态和组蛋白修饰(组蛋白3和4乙酰化(H3Ac和H4Ac)以及H3赖氨酸-27-三甲基化(H3K27me3))进行了评估。GBH 和 Gly 会降低 Lif mRNA 水平并导致 DNA 超甲基化。GBH 提高了 H3Ac 水平,而 Gly 则降低了 H3Ac 水平;两种化合物都提高了 H3K27me3 水平。最后,GBH 和 Gly 在 Lif 的调控区域诱导了类似的表观遗传学改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epigenetic alteration of uterine Leukemia Inhibitory Factor gene after glyphosate or a glyphosate-based herbicide exposure in rats

Glyphosate-based herbicides (GBHs) or its active ingredient, glyphosate (Gly), induce implantation failure in rats. We aimed to elucidate a mechanism of action of these compounds assessing the transcriptional and epigenetic status of the receptivity marker, leukemia inhibitory factor (Lif) gene. F0 rats were orally exposed to GBH or Gly at 3.8 or 3.9 mg Gly/kg/day, respectively, from gestational day (GD) 9 until weaning. F1 females were mated and uterine samples collected at GD5. Methylation-sensitive restriction enzymes (MSRE) sites and transcription factors were in silico predicted in regulatory regions of Lif gene. DNA methylation status and histone modifications (histone 3 and 4 acetylation (H3Ac and H4Ac) and H3 lysine-27-trimethylation (H3K27me3)) were assessed. GBH and Gly decreased Lif mRNA levels and caused DNA hypermethylation. GBH increased H3Ac levels, whereas Gly reduced them; both compounds enhanced H3K27me3 levels. Finally, both GBH and Gly induced similar epigenetic alterations in the regulatory regions of Lif.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
4.70%
发文量
185
审稿时长
34 days
期刊介绍: Environmental Toxicology and Pharmacology publishes the results of studies concerning toxic and pharmacological effects of (human and veterinary) drugs and of environmental contaminants in animals and man. Areas of special interest are: molecular mechanisms of toxicity, biotransformation and toxicokinetics (including toxicokinetic modelling), molecular, biochemical and physiological mechanisms explaining differences in sensitivity between species and individuals, the characterisation of pathophysiological models and mechanisms involved in the development of effects and the identification of biological markers that can be used to study exposure and effects in man and animals. In addition to full length papers, short communications, full-length reviews and mini-reviews, Environmental Toxicology and Pharmacology will publish in depth assessments of special problem areas. The latter publications may exceed the length of a full length paper three to fourfold. A basic requirement is that the assessments are made under the auspices of international groups of leading experts in the fields concerned. The information examined may either consist of data that were already published, or of new data that were obtained within the framework of collaborative research programmes. Provision is also made for the acceptance of minireviews on (classes of) compounds, toxicities or mechanisms, debating recent advances in rapidly developing fields that fall within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信