{"title":"弹丸穿透混凝土目标的周流体力学建模","authors":"","doi":"10.1016/j.ijimpeng.2024.105110","DOIUrl":null,"url":null,"abstract":"<div><p>A non-ordinary state-based peridynamics (NOSB-PD) model is proposed to simulate the projectile penetration into concrete targets. In this model, the Kong-Fang concrete material model recently proposed is firstly implemented into the NOSB-PD framework to describe the complex dynamic behavior and failures in concrete material subjected to penetration loading, and then an improved point-to-volume discrete frictional contact model is proposed to simulate the physical interaction between projectile and target. After the mesh-free discretization and explicit time integration, the proposed NOSB-PD model is used to numerically predict two sets of projectile penetration experiments into low-strength and high-strength concrete targets. And numerical predictions are found to be in good agreements with corresponding test data including penetration depth, projectile deceleration, deformation of projectile and failures in concrete targets.</p></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0734743X24002355/pdfft?md5=e1ca2bc0688a125002715bc3e786bd23&pid=1-s2.0-S0734743X24002355-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Peridynamics modelling of projectile penetration into concrete targets\",\"authors\":\"\",\"doi\":\"10.1016/j.ijimpeng.2024.105110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A non-ordinary state-based peridynamics (NOSB-PD) model is proposed to simulate the projectile penetration into concrete targets. In this model, the Kong-Fang concrete material model recently proposed is firstly implemented into the NOSB-PD framework to describe the complex dynamic behavior and failures in concrete material subjected to penetration loading, and then an improved point-to-volume discrete frictional contact model is proposed to simulate the physical interaction between projectile and target. After the mesh-free discretization and explicit time integration, the proposed NOSB-PD model is used to numerically predict two sets of projectile penetration experiments into low-strength and high-strength concrete targets. And numerical predictions are found to be in good agreements with corresponding test data including penetration depth, projectile deceleration, deformation of projectile and failures in concrete targets.</p></div>\",\"PeriodicalId\":50318,\"journal\":{\"name\":\"International Journal of Impact Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0734743X24002355/pdfft?md5=e1ca2bc0688a125002715bc3e786bd23&pid=1-s2.0-S0734743X24002355-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Impact Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0734743X24002355\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X24002355","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Peridynamics modelling of projectile penetration into concrete targets
A non-ordinary state-based peridynamics (NOSB-PD) model is proposed to simulate the projectile penetration into concrete targets. In this model, the Kong-Fang concrete material model recently proposed is firstly implemented into the NOSB-PD framework to describe the complex dynamic behavior and failures in concrete material subjected to penetration loading, and then an improved point-to-volume discrete frictional contact model is proposed to simulate the physical interaction between projectile and target. After the mesh-free discretization and explicit time integration, the proposed NOSB-PD model is used to numerically predict two sets of projectile penetration experiments into low-strength and high-strength concrete targets. And numerical predictions are found to be in good agreements with corresponding test data including penetration depth, projectile deceleration, deformation of projectile and failures in concrete targets.
期刊介绍:
The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them:
-Behaviour and failure of structures and materials under impact and blast loading
-Systems for protection and absorption of impact and blast loading
-Terminal ballistics
-Dynamic behaviour and failure of materials including plasticity and fracture
-Stress waves
-Structural crashworthiness
-High-rate mechanical and forming processes
-Impact, blast and high-rate loading/measurement techniques and their applications