{"title":"利用堆叠集合学习模型预测含硅灰的橡胶混凝土抗压强度","authors":"","doi":"10.1016/j.conbuildmat.2024.138254","DOIUrl":null,"url":null,"abstract":"<div><p>As the construction industry advances toward sustainability, rubberized concrete emerges as a promising material due to its potential for recycling waste rubber. While silica fume (SF) is often used to address the reduced compressive strength resulting from rubber integration, the complex interactions between these materials present significant modeling challenges. This study employs a novel machine learning approach to effectively capture these interactions and accurately predict the compressive strength of SF-enhanced rubberized concrete. Utilizing a dataset comprising 237 experimental data points curated from 25 research studies, an advanced stacking ensemble model was developed. This model features a trainable meta-structure that integrates diverse, hyper-tuned base learners, including Decision Trees (DT), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), and K-Nearest Neighbors (KNN) regressors. Hyperparameter tuning, performed using 10-fold cross-validation, was applied to enhance overall model performance. The findings show that XGBoost outperformed other base models, achieving an overall Coefficient of Determination (R²) of 0.9194 and a Mean Squared Error (MSE) of 10.5625. The stacking approach, with KNN as the meta-learner, further refined individual model performances, resulting in an improved R² of 0.9397 and an MSE of 7.1671 on the testing data. Compared to traditional voting ensemble techniques, the stacking models offered a more nuanced enhancement of predictive outcomes, while the averaging ensembles were noted for their simplicity and competitive accuracy. Additionally, feature importance analysis using SHapley Additive exPlanations (SHAP) revealed that superplasticizer, rubber content, and SF were the most influential inputs in the developed model.</p></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the compressive strength of rubberized concrete containing silica fume using stacking ensemble learning model\",\"authors\":\"\",\"doi\":\"10.1016/j.conbuildmat.2024.138254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As the construction industry advances toward sustainability, rubberized concrete emerges as a promising material due to its potential for recycling waste rubber. While silica fume (SF) is often used to address the reduced compressive strength resulting from rubber integration, the complex interactions between these materials present significant modeling challenges. This study employs a novel machine learning approach to effectively capture these interactions and accurately predict the compressive strength of SF-enhanced rubberized concrete. Utilizing a dataset comprising 237 experimental data points curated from 25 research studies, an advanced stacking ensemble model was developed. This model features a trainable meta-structure that integrates diverse, hyper-tuned base learners, including Decision Trees (DT), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), and K-Nearest Neighbors (KNN) regressors. Hyperparameter tuning, performed using 10-fold cross-validation, was applied to enhance overall model performance. The findings show that XGBoost outperformed other base models, achieving an overall Coefficient of Determination (R²) of 0.9194 and a Mean Squared Error (MSE) of 10.5625. The stacking approach, with KNN as the meta-learner, further refined individual model performances, resulting in an improved R² of 0.9397 and an MSE of 7.1671 on the testing data. Compared to traditional voting ensemble techniques, the stacking models offered a more nuanced enhancement of predictive outcomes, while the averaging ensembles were noted for their simplicity and competitive accuracy. Additionally, feature importance analysis using SHapley Additive exPlanations (SHAP) revealed that superplasticizer, rubber content, and SF were the most influential inputs in the developed model.</p></div>\",\"PeriodicalId\":288,\"journal\":{\"name\":\"Construction and Building Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction and Building Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950061824033968\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824033968","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Predicting the compressive strength of rubberized concrete containing silica fume using stacking ensemble learning model
As the construction industry advances toward sustainability, rubberized concrete emerges as a promising material due to its potential for recycling waste rubber. While silica fume (SF) is often used to address the reduced compressive strength resulting from rubber integration, the complex interactions between these materials present significant modeling challenges. This study employs a novel machine learning approach to effectively capture these interactions and accurately predict the compressive strength of SF-enhanced rubberized concrete. Utilizing a dataset comprising 237 experimental data points curated from 25 research studies, an advanced stacking ensemble model was developed. This model features a trainable meta-structure that integrates diverse, hyper-tuned base learners, including Decision Trees (DT), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), and K-Nearest Neighbors (KNN) regressors. Hyperparameter tuning, performed using 10-fold cross-validation, was applied to enhance overall model performance. The findings show that XGBoost outperformed other base models, achieving an overall Coefficient of Determination (R²) of 0.9194 and a Mean Squared Error (MSE) of 10.5625. The stacking approach, with KNN as the meta-learner, further refined individual model performances, resulting in an improved R² of 0.9397 and an MSE of 7.1671 on the testing data. Compared to traditional voting ensemble techniques, the stacking models offered a more nuanced enhancement of predictive outcomes, while the averaging ensembles were noted for their simplicity and competitive accuracy. Additionally, feature importance analysis using SHapley Additive exPlanations (SHAP) revealed that superplasticizer, rubber content, and SF were the most influential inputs in the developed model.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.