论双线性卡普托随机分微分方程解的渐近行为

Pub Date : 2024-09-10 DOI:10.1016/j.spl.2024.110272
P.T. Huong, P.T. Anh
{"title":"论双线性卡普托随机分微分方程解的渐近行为","authors":"P.T. Huong,&nbsp;P.T. Anh","doi":"10.1016/j.spl.2024.110272","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we focus on investigating the asymptotic behavior of solutions in a mean square sense to bilinear Caputo stochastic fractional differential equations (CSFDEs). The main tools in the proof include a variation of the constant formula for CSFDEs, the Jordan normal form of a matrix, the summation formula of Djrbashian type, and constructing a weighted norm in the associated Banach space.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167715224002414/pdfft?md5=474d3621024386b9dd6b6eb18750084f&pid=1-s2.0-S0167715224002414-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the asymptotic behavior of solutions to bilinear Caputo stochastic fractional differential equations\",\"authors\":\"P.T. Huong,&nbsp;P.T. Anh\",\"doi\":\"10.1016/j.spl.2024.110272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we focus on investigating the asymptotic behavior of solutions in a mean square sense to bilinear Caputo stochastic fractional differential equations (CSFDEs). The main tools in the proof include a variation of the constant formula for CSFDEs, the Jordan normal form of a matrix, the summation formula of Djrbashian type, and constructing a weighted norm in the associated Banach space.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002414/pdfft?md5=474d3621024386b9dd6b6eb18750084f&pid=1-s2.0-S0167715224002414-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文重点研究双线性卡普托随机分数微分方程(CSFDEs)在均方意义上的解的渐近行为。证明的主要工具包括 CSFDE 常量公式的变式、矩阵的乔丹法形式、Djrbashian 类型的求和公式,以及构建相关巴拿赫空间中的加权规范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the asymptotic behavior of solutions to bilinear Caputo stochastic fractional differential equations

In this paper, we focus on investigating the asymptotic behavior of solutions in a mean square sense to bilinear Caputo stochastic fractional differential equations (CSFDEs). The main tools in the proof include a variation of the constant formula for CSFDEs, the Jordan normal form of a matrix, the summation formula of Djrbashian type, and constructing a weighted norm in the associated Banach space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信