{"title":"论双线性卡普托随机分微分方程解的渐近行为","authors":"P.T. Huong, P.T. Anh","doi":"10.1016/j.spl.2024.110272","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we focus on investigating the asymptotic behavior of solutions in a mean square sense to bilinear Caputo stochastic fractional differential equations (CSFDEs). The main tools in the proof include a variation of the constant formula for CSFDEs, the Jordan normal form of a matrix, the summation formula of Djrbashian type, and constructing a weighted norm in the associated Banach space.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167715224002414/pdfft?md5=474d3621024386b9dd6b6eb18750084f&pid=1-s2.0-S0167715224002414-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the asymptotic behavior of solutions to bilinear Caputo stochastic fractional differential equations\",\"authors\":\"P.T. Huong, P.T. Anh\",\"doi\":\"10.1016/j.spl.2024.110272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we focus on investigating the asymptotic behavior of solutions in a mean square sense to bilinear Caputo stochastic fractional differential equations (CSFDEs). The main tools in the proof include a variation of the constant formula for CSFDEs, the Jordan normal form of a matrix, the summation formula of Djrbashian type, and constructing a weighted norm in the associated Banach space.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002414/pdfft?md5=474d3621024386b9dd6b6eb18750084f&pid=1-s2.0-S0167715224002414-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the asymptotic behavior of solutions to bilinear Caputo stochastic fractional differential equations
In this paper, we focus on investigating the asymptotic behavior of solutions in a mean square sense to bilinear Caputo stochastic fractional differential equations (CSFDEs). The main tools in the proof include a variation of the constant formula for CSFDEs, the Jordan normal form of a matrix, the summation formula of Djrbashian type, and constructing a weighted norm in the associated Banach space.